
Finite automata theory and
formal languages

(DIT321, TMV027)

Nils Anders Danielsson,
partly based on slides by Ana Bove

2019-01-21–22



Regular expressions

▶ Used in text editors:
M-x replace-regexp RET
add(\([^,]*\), \([^)]*\)) RET
\1 + \2 RET

▶ Used to describe the lexical syntax of
programming languages.



Finite automata

▶ Used to implement regular expression engines.
▶ Used to specify or model systems.

▶ One kind of finite automaton is used in
the specification of TCP.

▶ Equivalent to regular expressions.

https://tools.ietf.org/html/rfc793


Finite automata

.. Unlocked. Locked..

Lock

.

Unlock



Finite automata

Accepts strings of ones of even length:

.. 𝑠0. 𝑠1..
1

.

1

▶ The states are a kind of memory.
▶ Finite number of states ⇒ finite memory.



Regular expressions

▶ A regular expression for strings of ones of even
length: (11)∗.

▶ A regular expression for some keywords:
while ∣ for ∣ if ∣ else.

▶ A regular expression for positive natural
number literals (of a certain form): [1–9][0–9]∗.



Finite automata
Accepts positive natural number literals:

.. Start. OK.

Bad

.. '1','2',…,'9'.

'0','1',…,'9'

.

'0','a','b',…

.

'a','b',…

.

'0',…,'9',
'a','b',…



Conversions

▶ We will see how to convert regular expressions
to and from finite automata.

▶ In fact, we will discuss several kinds of finite
automata, and conversions between the
different kinds.



Context-free grammars

▶ More general than regular expressions.
▶ Used to describe the syntax of programming

languages.
▶ Used by parser generators. (Often restricted.)



Context-free grammars

Expr ∷= Number
∣ Expr Op Expr
∣ '(' Expr ')'

Op ∷= '+' ∣ '-' ∣ '*' ∣ '/'



Turing machines

▶ A model of what it means to “compute”:
▶ Unbounded memory: an infinite tape of

cells.
▶ A read/write head that can move along

the tape.
▶ Rules for what the head should do.

▶ Equivalent to a number of other models of
computation.



Proofs

▶ Used to make it more likely that arguments are
correct.

▶ Used to make arguments more convincing.



Induction

▶ Inductively defined sets.
▶ An example:

The natural numbers (ℕ = { 0, 1, 2, … }).
▶ Regular induction for ℕ.
▶ Complete (strong, course of values) induction

for ℕ.
▶ Structural induction for inductively defined

sets.



General information

See the course web pages.



I want feedback

▶ This is the first time I am giving this course.
▶ I expect that some things will not work

perfectly.
▶ If you find that something does not work as

well as it could, please tell me (or the student
representatives) as soon as possible.



Repetition
(?) of some

classical
logic



Propositions

▶ A proposition is, roughly speaking, some
statement that is true or false.
▶ 2 = 3.
▶ The program let x = x in x terminates

with the value 9.
▶ P = NP.
▶ If P = NP, then 2 = 3.

▶ It may not always be known what the truth
value (⊤ or ⊥) of a proposition is.



Some logical connectives

▶ And: ∧.
▶ Or: ∨.
▶ Not: ¬.
▶ Implies: ⇒.
▶ If and only if (iff): ⇔.



Some logical connectives

Truth tables for these connectives:

p q p ∧ q p ∨ q ¬p p ⇒ q p ⇔ q
⊤ ⊤ ⊤ ⊤ ⊥ ⊤ ⊤
⊤ ⊥ ⊥ ⊤ ⊥ ⊥ ⊥
⊥ ⊤ ⊥ ⊤ ⊤ ⊤ ⊥
⊥ ⊥ ⊥ ⊥ ⊤ ⊤ ⊤

Note that p ⇒ q is true if p is false.



Which of the following truth tables are
correct for the proposition (𝑝 ∨ 𝑞) ⇒ 𝑝?

A:

p q (p ∨ q) ⇒ p

⊤ ⊤ ⊤
⊤ ⊥ ⊥
⊥ ⊤ ⊥
⊥ ⊥ ⊥

B:

p q (p ∨ q) ⇒ p

⊤ ⊤ ⊤
⊤ ⊥ ⊤
⊥ ⊤ ⊥
⊥ ⊥ ⊥

C:

p q (p ∨ q) ⇒ p

⊤ ⊤ ⊤
⊤ ⊥ ⊤
⊥ ⊤ ⊥
⊥ ⊥ ⊤

D:

p q (p ∨ q) ⇒ p

⊤ ⊤ ⊤
⊤ ⊥ ⊤
⊥ ⊤ ⊤
⊥ ⊥ ⊤

Respond at https://pingo.coactum.de/,
using a code that I provide.

https://pingo.coactum.de/


Validity

▶ A proposition is valid, or a tautology, if it is
satisfied for all assignments of truth values to
its variables.

▶ Examples:
▶ p ⇒ p.
▶ p ∨ ¬p.



Logical equivalence

▶ Two propositions p and q are logically
equivalent if they have the same truth tables,
i.e. if p ⇔ q is valid.

▶ Examples:
▶ ¬ ¬ p ⇔ p.
▶ (p ⇔ q) ⇔ (p ⇒ q) ∧ (q ⇒ p).
▶ p ∧ q ⇔ q ∧ p.
▶ p ∧ (q ∨ r) ⇔ (p ∧ q) ∨ (p ∧ r).
▶ p ∧ (p ∨ q) ⇔ p.



Which of the following propositions are valid?

1. (𝑝 ⇒ 𝑞) ⇔ ¬𝑝 ∨ 𝑞.
2. (𝑝 ⇒ 𝑞) ⇔ 𝑝 ∨ ¬𝑞.
3. ¬(𝑝 ∧ 𝑞) ⇔ ¬𝑝 ∧ ¬𝑞.
4. ¬(𝑝 ∧ 𝑞) ⇔ ¬𝑝 ∨ ¬𝑞.
5. ((𝑝 ⇒ 𝑝) ⇒ 𝑞) ⇒ 𝑝.
6. ((𝑝 ⇒ 𝑞) ⇒ 𝑝) ⇒ 𝑝.



Predicates

A predicate is, roughly speaking, a function to
propositions.
▶ 𝑃(𝑛) = “𝑛 is a prime number”.
▶ 𝑄(𝑎, 𝑏) = “(𝑎 + 𝑏)2 = 𝑎2 + 2𝑎𝑏 + 𝑏2”.



Quantifiers

Quantifiers:
▶ For all: ∀.

▶ ∀𝑥. 𝑥 = 𝑥.
▶ ∀𝑎, 𝑏 ∈ ℝ. (𝑎 + 𝑏)2 = 𝑎2 + 2𝑎𝑏 + 𝑏2.

▶ There exists: ∃.
▶ ∃𝑛 ∈ ℕ. 𝑛 = 2𝑛.



Which of the following propositions,
involving predicate variables, are valid?

1. (¬∀𝑛 ∈ ℕ. 𝑃 (𝑛)) ⇔ (∀𝑛 ∈ ℕ. ¬𝑃(𝑛)).
2. (¬∀𝑛 ∈ ℕ. 𝑃 (𝑛)) ⇔ (∃𝑛 ∈ ℕ. ¬𝑃(𝑛)).
3. (∀𝑚 ∈ ℕ. ∃𝑛 ∈ ℕ. 𝑃 (𝑚, 𝑛)) ⇔

(∃𝑛 ∈ ℕ. ∀𝑚 ∈ ℕ. 𝑃 (𝑚, 𝑛)).



Repetition
(?) of some
set theory



Sets

▶ A set is, roughly speaking, a collection of
elements.

▶ Some notation for defining sets:
▶ { 0, 1, 2, 4, 8 }.
▶ { 𝑛 ∈ ℕ | 𝑛 > 2 }.
▶ { 2𝑛 | 𝑛 ∈ ℕ }.



Members, subsets

▶ Membership: ∈.
▶ 4 ∈ { 2𝑛 | 𝑛 ∈ ℕ }.
▶ 2 ∉ { 𝑛 ∈ ℕ | 𝑛 > 2 }.

▶ Two sets are equal if they have the same
elements: (𝐴 = 𝐵) ⇔ (∀𝑥. 𝑥 ∈ 𝐴 ⇔ 𝑥 ∈ 𝐵).

▶ Subset relation:
(𝐴 ⊆ 𝐵) ⇔ (∀𝑥. 𝑥 ∈ 𝐴 ⇒ 𝑥 ∈ 𝐵).
▶ { 2𝑛 | 𝑛 ∈ ℕ } ⊆ ℕ.
▶ { 0, 1, 2, 4, 8 } ⊈ { 𝑛 ∈ ℕ | 𝑛 > 2 }.



An aside

▶ Unrestricted naive set theory can be
inconsistent.

▶ Russell’s paradox:
▶ Define 𝑆 = { 𝑋 | 𝑋 ∉ 𝑋 },

where 𝑋 ranges over all sets.
▶ We have 𝑆 ∈ 𝑆 ⇔ 𝑆 ∉ 𝑆!?
▶ One can fix this problem by imposing rules

that ensure that 𝑆 is not a set.



Set operations

▶ The empty set: ∅.
▶ Union: 𝐴 ∪ 𝐵 = { 𝑥 | 𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵 }.
▶ Intersection: 𝐴 ∩ 𝐵 = { 𝑥 | 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵 }.
▶ Cartesian product:

𝐴 × 𝐵 = { (𝑥, 𝑦) | 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 }.
▶ Set difference:

𝐴 ∖ 𝐵 = 𝐴 − 𝐵 = { 𝑥 ∈ 𝐴 | 𝑥 ∉ 𝐵 }.
▶ Complement: 𝐴 = 𝑈 ∖ 𝐴

(if 𝑈 is fixed in advance and 𝐴 ⊆ 𝑈).
▶ Power set: ℘(𝑆) = 2𝑆 = { 𝐴 | 𝐴 ⊆ 𝑆 }.



Which of the following propositions are valid?
Variables range over sets. 𝑈 is non-empty.

1. 𝐴 ∩ 𝐵 = 𝐴 ∩ 𝐵.
2. 𝐴 ∩ 𝐵 = 𝐴 ∪ 𝐵.
3. ∅ = { ∅ }.
4. 𝐴 ∈ ℘(𝐴).
5. 𝐴 ∪ (𝐵 ∩ 𝐶) = (𝐴 ∪ 𝐵) ∩ 𝐶.
6. 𝐴 ∪ (𝐵 ∩ 𝐶) = (𝐴 ∪ 𝐵) ∩ (𝐴 ∪ 𝐶).



Relations

▶ A binary relation 𝑅 on 𝐴 is a subset of
𝐴2 = 𝐴 × 𝐴: 𝑅 ⊆ 𝐴2.

▶ Notation: 𝑥𝑅𝑦 means the same as (𝑥, 𝑦) ∈ 𝑅.
▶ Can be generalised from 𝐴 × 𝐴 to

𝐴 × 𝐵 × 𝐶 × ⋯.



Properties of binary relations

▶ Reflexive: ∀𝑥 ∈ 𝐴. 𝑥𝑅𝑥.
▶ Symmetric: ∀𝑥, 𝑦 ∈ 𝐴. 𝑥𝑅𝑦 ⇒ 𝑦𝑅𝑥.
▶ Transitive: ∀𝑥, 𝑦, 𝑧 ∈ 𝐴. 𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧 ⇒ 𝑥𝑅𝑧.
▶ Antisymmetric:

∀𝑥, 𝑦 ∈ 𝐴. 𝑥𝑅𝑦 ∧ 𝑦𝑅𝑥 ⇒ 𝑥 = 𝑦.



Partial orders

A partial order is reflexive, antisymmetric and
transitive.
▶ ≤ for ℕ.
▶ Not <.



Which of the following sets are partial orders
on { 0, 1 }?

1. { (0, 0) }.
2. { (0, 0), (1, 1) }.
3. { (0, 0), (0, 1), (1, 1) }.
4. { (0, 0), (0, 1), (1, 0) }.



Equivalence relations

An equivalence relation is reflexive, symmetric and
transitive.
▶ { (𝑛, 𝑛) | 𝑛 ∈ ℕ } ⊆ ℕ2.
▶ Not { (𝑛, 𝑛) | 𝑛 ∈ ℕ } ⊆ ℝ2.



Which of the following sets are equivalence
relations on { 0, 1 }?

1. { (0, 0) }.
2. { (0, 0), (1, 1) }.
3. { (0, 0), (0, 1), (1, 0) }.
4. { (0, 0), (0, 1), (1, 0), (1, 1) }.



Partitions

A partition of the set 𝐴 is a set 𝑃 ⊆ ℘(𝐴)
satisfying the following properties:
▶ Every element is non-empty: ∀𝐵 ∈ 𝑃 . 𝐵 ≠ ∅.
▶ The elements cover 𝐴: ⋃𝐵∈𝑃 𝐵 = 𝐴.
▶ The elements are mutually disjoint:

∀𝐵, 𝐶 ∈ 𝑃 . 𝐵 ≠ 𝐶 ⇒ 𝐵 ∩ 𝐶 = ∅.



Equivalence classes

▶ The equivalence classes of an equivalence
relation 𝑅 on 𝐴: [𝑥]𝑅 = { 𝑦 ∈ 𝐴 | 𝑥𝑅𝑦 }.

▶ Note that ∀𝑥, 𝑦 ∈ 𝐴. [𝑥]𝑅 = [𝑦]𝑅 ⇔ 𝑥𝑅𝑦.
▶ The equivalence classes { [𝑥]𝑅 | 𝑥 ∈ 𝐴 }

partition 𝐴.
▶ The quotient set 𝐴/𝑅 = { [𝑥]𝑅 | 𝑥 ∈ 𝐴 }.



Quotients

Some examples:
▶ ℤ = ℕ2/ ∼ℤ,

where
(𝑚1, 𝑛1) ∼ℤ (𝑚2, 𝑛2) ⇔ 𝑚1 + 𝑛2 = 𝑚2 + 𝑛1.

▶ ℚ = { (𝑚, 𝑛) | 𝑚 ∈ ℤ, 𝑛 ∈ ℕ ∖ { 0 } } / ∼ℚ,
where
(𝑚1, 𝑛1) ∼ℚ (𝑚2, 𝑛2) ⇔ 𝑚1𝑛2 = 𝑚2𝑛1.



Which of the following propositions are true?

1. [(2, 5)]∼ℤ
= [(0, 3)]∼ℤ

.
2. [(2, 5)]∼ℤ

= [(3, 0)]∼ℤ
.

3. [(2, 5)]∼ℚ
= [(4, 10)]∼ℚ

.
4. [(2, 5)]∼ℚ

= [(10, 4)]∼ℚ
.



More properties of relations

For 𝑅 ⊆ 𝐴 × 𝐵:
▶ Total (left-total): ∀𝑥 ∈ 𝐴. ∃𝑦 ∈ 𝐵. 𝑥𝑅𝑦.
▶ Functional/deterministic:

∀𝑥 ∈ 𝐴. ∀𝑦, 𝑧 ∈ 𝐵. 𝑥𝑅𝑦 ∧ 𝑥𝑅𝑧 ⇒ 𝑦 = 𝑧.



Functions

▶ The set of functions from the set 𝐴 to the set
𝐵 is denoted by 𝐴 → 𝐵.

▶ It is sometimes defined as the set of total and
functional relations 𝑓 ⊆ 𝐴 × 𝐵.

▶ Notation: 𝑓(𝑥) = 𝑦 means (𝑥, 𝑦) ∈ 𝑓 .
▶ If the requirement of totality is dropped, then

we get the set of partial functions, 𝐴 ⇀ 𝐵.
▶ The domain is 𝐴, and the codomain 𝐵.
▶ The image is { 𝑦 ∈ 𝐵 | 𝑥 ∈ 𝐴, 𝑓(𝑥) = 𝑦 }.



Which of the following relations on { 𝑎, 𝑏 }
are functions?

1. { }.
2. { (𝑎, 𝑎) }.
3. { (𝑎, 𝑎), (𝑎, 𝑏) }.
4. { (𝑎, 𝑎), (𝑏, 𝑎) }.
5. { (𝑎, 𝑎), (𝑏, 𝑎), (𝑏, 𝑏) }.



Identity, composition

▶ The identity function id on a set 𝐴 is defined
by id(𝑥) = 𝑥.

▶ For functions 𝑓 ∈ 𝐵 → 𝐶 and 𝑔 ∈ 𝐴 → 𝐵 the
composition 𝑓 ∘ 𝑔 ∈ 𝐴 → 𝐶 is defined by
(𝑓 ∘ 𝑔)(𝑥) = 𝑓(𝑔(𝑥)).



Injections

The function 𝑓 ∈ 𝐴 → 𝐵 is injective if
∀𝑥, 𝑦 ∈ 𝐴. 𝑓(𝑥) = 𝑓(𝑦) ⇒ 𝑥 = 𝑦.
▶ Every input is mapped to a unique output.
▶ Means that 𝐴 is “no larger than” 𝐵.
▶ Holds if 𝑓 has a left inverse 𝑔 ∈ 𝐵 → 𝐴:

𝑔 ∘ 𝑓 = id.



Surjections

The function 𝑓 ∈ 𝐴 → 𝐵 is surjective if
∀𝑦 ∈ 𝐵. ∃𝑥 ∈ 𝐴. 𝑓(𝑥) = 𝑦.
▶ The function “targets” every element in the

codomain.
▶ Means that 𝐴 is “no smaller than” 𝐵.
▶ Holds if 𝑓 has a right inverse 𝑔 ∈ 𝐵 → 𝐴:

𝑓 ∘ 𝑔 = id.



Bijections

The function 𝑓 ∈ 𝐴 → 𝐵 is bijective if
it is both injective and surjective.
▶ Means that 𝐴 and 𝐵 have the same “size”.
▶ Holds if and only if 𝑓 has a left and right

inverse 𝑔 ∈ 𝐵 → 𝐴.



Which of the following functions are
injective? Surjective?
▶ 𝑓 ∈ ℕ → ℕ, 𝑓(𝑛) = 𝑛 + 1.
▶ 𝑔 ∈ ℤ → ℤ, 𝑔(𝑖) = 𝑖 + 1.

▶ ℎ ∈ ℕ → Bool, ℎ(𝑛) = {true, if 𝑛 is even,
false, otherwise.



The pigeonhole principle

▶ If there are 𝑛 pigeonholes, and 𝑚 > 𝑛 pigeons
in these pigeonholes, then at least one
pigeonhole must contain more than one pigeon.

▶ If 𝑓 ∈ { 𝑘 ∈ ℕ | 𝑘 < 𝑚 } → { 𝑘 ∈ ℕ | 𝑘 < 𝑛 }
for 𝑚, 𝑛 ∈ ℕ, and 𝑚 > 𝑛, then 𝑓 is not
injective.



Next lecture

▶ Proofs.
▶ Induction for the natural numbers.
▶ Inductively defined sets.
▶ Recursive functions.

Deadline for the first quiz: 2019-01-23, 15:00.


	Overview
	Repetition (?) of some classical logic
	Repetition (?) of some set theory
	Conclusion

