
Lecture
Computability

(DIT312, DAT415)

Nils Anders Danielsson

2019-11-25



Applications

▶ Inductively defined sets/structural induction:
General tools for defining and proving things.

▶ Primitive recursion: Terminating.
▶ Semantics: What do programs mean?
▶ Computability:

What can/cannot be implemented?



Today

▶ Χ-computability.
▶ A self-interpreter for 𝜒.
▶ Reductions.
▶ More problems that are or are not computable.
▶ More about coding.



Χ-
computability



⟦ ⟧

▶ Define CExp = {p ∈ Exp ∣ p is closed}.
▶ The semantics as a partial function:

⟦ ⟧ ∈ CExp ⇀ CExp
⟦p⟧ = v if p ⇓ v



Χ-computable functions
Assume that we have methods for representing
members of the sets A and B as closed
𝜒 expressions.

A partial function f ∈ A ⇀ B is 𝜒-computable
(with respect to these methods) if

∃ e ∈ CExp. ∀ a ∈ A. ⟦e ⌜ a ⌝⟧ = ⌜ f a ⌝.

Note: If one side is undefined, then
the other side must also be undefined.



Χ-computable functions
A special case:

A (total) function f ∈ A → B is 𝜒-computable if
there is a closed expression e such that:
▶ ∀a ∈ A. e ⌜ a ⌝ ⇓ ⌜ f a ⌝.



Quiz

What would go “wrong” if we decided to
represent closed 𝜒 expressions in the
following way?
A closed 𝜒 expression is represented by True() if it
terminates, and by False() otherwise.



Representation

▶ The choice of representation is important.
▶ In this course (unless otherwise noted or

inapplicable): The “standard” representation.
▶ It might make sense to require that the

representation function ⌜ ⌝ is “computable”.
▶ However, how should this be defined?



Examples

▶ Addition of natural numbers is 𝜒-computable:

add ∈ ℕ × ℕ → ℕ
add (m, n) = m + n

▶ The intensional halting problem is not
𝜒-computable:

halts ∈ CExp → Bool
halts p = if p terminates then true else false

▶ The semantics ⟦ ⟧ is computable.



Self-
interpreter



Self-interpreter

Goal: Define eval ∈ CExp satisfying

∀ e ∈ CExp. ⟦eval ⌜ e ⌝⟧ = ⌜ ⟦e⟧ ⌝.



Self-interpreter

rec eval = 𝜆e. case e of
{…
}



Self-interpreter

lambda x e ⇓ lambda x e

Lambda(x, e) → Lambda(x, e)



Self-interpreter

e1 ⇓ lambda x e e2 ⇓ v2 e [x ← v2 ] ⇓ v
apply e1 e2 ⇓ v

Apply(e1, e2) → case eval e1 of
{Lambda(x, e) → eval (subst x (eval e2) e)
}

Exercise: Define subst.



Self-interpreter

e [x ← rec x e ] ⇓ v
rec x e ⇓ v

Rec(x, e) → eval (subst x Rec(x, e) e)



Self-interpreter

es ⇓⋆ vs
const c es ⇓ const c vs

Const(c, es) → Const(c, map eval es)

Exercise: Define map.



Self-interpreter

e ⇓ const c vs Lookup c bs xs e′

e′ [xs ← vs] ↦ e″ e″ ⇓ v
case e bs ⇓ v

Case(e, bs) → case eval e of
{Const(c, vs) → case lookup c bs of

{Pair(xs, e′) → eval (substs xs vs e′)
}

}

Exercise: Define lookup and substs.



Self-interpreter
rec eval = 𝜆e. case e of

{Lambda(x, e) → Lambda(x, e)
; Apply(e1, e2) → case eval e1 of

{Lambda(x, e) → eval (subst x (eval e2) e)}
; Rec(x, e) → eval (subst x Rec(x, e) e)
; Const(c, es) → Const(c, map eval es)
; Case(e, bs) → case eval e of

{Const(c, vs) → case lookup c bs of
{Pair(xs, e′) → eval (substs xs vs e′)}

}
}

Note: subst, map, lookup and substs are
meta-variables that stand for (closed) expressions.



Quiz

Is the following partial function
𝜒-computable?

halts ∈ CExp ⇀ Bool
halts p =

if p terminates then true else undefined



Χ-decidable
A function f ∈ A → Bool is 𝜒-decidable if it is
𝜒-computable. If not, then it is 𝜒-undecidable.



Χ-semi-decidable
A function f ∈ A → Bool is 𝜒-semi-decidable if there
is a closed expression e such that, for all a ∈ A:
▶ If f a = true then e ⌜ a ⌝ ⇓ ⌜ true ⌝.
▶ If f a = false then e ⌜ a ⌝ does not terminate.



The halting problem is semi-decidable

The halting problem:

halts ∈ CExp → Bool
halts p = if p terminates then true else false

A program witnessing the semi-decidability:

𝜆p. (𝜆 . True()) (eval p)



Reductions



Reductions (one variant)
A 𝜒-reduction of f ∈ A ⇀ B to g ∈ C ⇀ D
consists of a proof showing that,
if g is 𝜒-computable, then f is 𝜒-computable.

▶ If f is reducible to g, and f is not computable,
then g is not computable.

▶ Last week we proved that the halting problem
is undecidable by reducing another problem
to it.



Reductions (one variant)
A 𝜒-reduction of f ∈ A ⇀ B to g ∈ C ⇀ D
consists of a proof showing that,
if g is 𝜒-computable, then f is 𝜒-computable.

▶ If f is reducible to g, and f is not computable,
then g is not computable.

▶ Last week we proved that the halting problem
is undecidable by reducing another problem
to it.



More
(un)decidable

problems



Semantic equality

▶ Are two closed 𝜒 expressions semantically
equal?

equal ∈ CExp × CExp → Bool
equal (e1, e2) =

if ⟦e1⟧ = ⟦e2⟧ then true else false

▶ The halting problem reduces to this one:

halts = 𝜆p. not (equal Pair(p, ⌜ rec x = x ⌝))



Pointwise equality
▶ Pointwise equality:

pointwise-equal ∈ CExp × CExp → Bool
pointwise-equal (e1, e2) =

if ∀ e ∈ CExp. ⟦e1 e⟧ = ⟦e2 e⟧
then true else false

▶ The previous problem reduces to this one:
equal = 𝜆p. case p of

{Pair(e1, e2) →
pointwise-equal

Pair(Lambda(Zero(), e1),
Lambda(Zero(), e2))

}



Termination in n steps

▶ Termination in n steps:

terminates-in ∈ CExp × ℕ → Bool
terminates-in (e, n) =

if ∃ v. ∃ p ∈ e ⇓ v. ∣ p ∣ ≤ n
then true else false

∣p∣: The number of rules in the derivation tree.
▶ Decidable: We can define a variant of the

self-interpreter that tries to evaluate e but
stops if more than n rules are needed.



Representation
▶ How do we represent a 𝜒-computable function?
▶ For instance a member of the set

{f ∈ ℕ → ℕ ∣ f is 𝜒-computable}.

▶ By the representation of one of the closed
expressions witnessing the computability of the
function. However, which one?

▶ One solution: Switch to

{(f, e) ∣ f ∈ ℕ → ℕ, e ∈ CExp, e implements f},

and define ⌜ (f, e) ⌝ = ⌜ e ⌝.



Quiz

Is the following problem 𝜒-decidable for
A = Bool? What if A = ℕ?

let Fun = {(f, e) ∣ f ∈ A → Bool, e ∈ CExp,
e implements f} in

pointwise-equal′ ∈ Fun × Fun → Bool
pointwise-equal′ ((f, ), (g, )) =

if ∀ a ∈ A. f a = g a then true else false

Hint: Use eval or terminates-in.



Pointwise equality of computable
functions in Bool → Bool

▶ The function pointwise-equal′ is decidable.
▶ Implementation:

pointwise-equal′ = 𝜆p. case p of
{Pair(f, g) →

and (equalBool (eval Apply(f, ⌜ True() ⌝))
(eval Apply(g, ⌜ True() ⌝)))

(equalBool (eval Apply(f, ⌜ False() ⌝))
(eval Apply(g, ⌜ False() ⌝)))

}



Pointwise equality of computable
functions in Bool → Bool

▶ The function pointwise-equal′ is decidable.
▶ Implementation:

pointwise-equal′ = 𝜆p. case p of
{Pair(f, g) →

and (equalBool (eval ⌜ ⌞ f ⌟ True() ⌝)
(eval ⌜ ⌞ g ⌟ True() ⌝))

(equalBool (eval ⌜ ⌞ f ⌟ False() ⌝)
(eval ⌜ ⌞ g ⌟ False() ⌝))

}



Pointwise equality of computable
functions in ℕ → Bool

▶ The function pointwise-equal′ is undecidable.
▶ The halting problem reduces to it:

halts = 𝜆p. not (pointwise-equal′
Pair(⌜ 𝜆n. terminates-in Pair(⌞ code p ⌟, n) ⌝,

⌜ 𝜆 . False() ⌝))



Coding



⌞ ⌟
One way to give a semantics to ⌞ ⌟:
▶ ⌞ ⌟ is a constructor of a variant of Exp:

e ∈ Exp
⌞ e ⌟ ∈ Exp

e1 ∈ Exp e2 ∈ Exp
apply e1 e2 ∈ Exp

⋯

▶ This variant is the domain of ⌜ ⌝:

⌜ ⌝ ∈ Exp → Exp
⌜ ⌞ e ⌟ ⌝ = e
⌜ apply e1 e2 ⌝ = Apply(⌜ e1 ⌝, ⌜ e2 ⌝)
⋮



⌞ ⌟

▶ Examples:

⌜ ⌞ f ⌟ True() ⌝ = Apply(f, ⌜ True() ⌝)
⌜ eval ⌞ code e ⌟ ⌝ = Apply(⌜ eval ⌝, code e)

▶ Note that you do not have to use ⌞ ⌟.



⌞ ⌟
The reduction used above:

halts = 𝜆p. not (pointwise-equal′
Pair(⌜ 𝜆n. terminates-in Pair(⌞ code p ⌟, n) ⌝,

⌜ 𝜆 . False() ⌝))
Expanded:

𝜆p. not (pointwise-equal′
Pair(Lambda(⌜ n ⌝,

Apply(⌜ terminates-in ⌝,
Const(⌜ Pair ⌝,

Cons(code p,
Cons(Var(⌜ n ⌝), Nil()))))),

⌜ 𝜆 . False() ⌝))



Coding

Probably not what you want:

𝜆p. ⌜ eval p ⌝ = 𝜆p. Apply(⌜ eval ⌝, Var(⌜ p ⌝))

If p corresponds to 0:

𝜆p. Apply(⌜ eval ⌝, Var(Zero()))

The argument p is ignored.



Coding

Perhaps more useful:

𝜆p. ⌜ eval ⌞ code p ⌟ ⌝ = 𝜆p. Apply(⌜ eval ⌝, code p)

For any closed expression e:

(𝜆p. ⌜ eval ⌞ code p ⌟ ⌝) ⌜ e ⌝ ⇓ ⌜ eval ⌜ e ⌝ ⌝



Quiz

What is the result of evaluating
(𝜆p. eval ⌜ eval ⌞ code p ⌟ ⌝) ⌜ Zero() ⌝?

1. Nothing
2. Zero()
3. ⌜ Zero() ⌝
4. ⌜ ⌜ Zero() ⌝ ⌝
5. ⌜ ⌜ ⌜ Zero() ⌝ ⌝ ⌝
6. ⌜ ⌜ ⌜ ⌜ Zero() ⌝ ⌝ ⌝ ⌝

Recall that ⟦eval ⌜ e ⌝⟧ = ⌜ ⟦e⟧ ⌝ (for e ∈ CExp).



Types

▶ The language 𝜒 is untyped.
▶ However, it may be instructive to see certain

programs as typed.



Types
▶ Rep A: Representations of programs of type A.
▶ Some examples:

True() ∶ Bool
⌜ True() ⌝ ∶ Rep Bool
⌜ true ⌝ ∶ Bool
𝜆 f. 𝜆x. f x ∶ (A → B) → A → B
𝜆 f. 𝜆x. Apply(f, x) ∶ Rep (A → B) →

Rep A → Rep B
eval ∶ Rep A → Rep A
code ∶ Rep A → Rep (Rep A)
terminates-in ∶ Rep A × ℕ → Bool
⌜ terminates-in ⌝ ∶ Rep (Rep A × ℕ → Bool)



Types
The reduction used above:

halts = 𝜆p. not (pointwise-equal′
Pair(⌜ 𝜆n. terminates-in Pair(⌞ code p ⌟, n) ⌝,

⌜ 𝜆 . False() ⌝))
If

pointwise-equal′ ∶
Rep (ℕ → Bool) × Rep (ℕ → Bool) → Bool

then

halts ∶ Rep A → Bool.



More
undecidable

problems



Quiz

Is the following function 𝜒-computable?

optimise ∈ CExp → CExp
optimise e =

some optimally small expression with
the same semantics as e

Size: The number of constructors in the abstract
syntax (Exp, Br, List, not Var or Const).



Full employment theorem
for compiler writers

▶ An optimally small non-terminating expression
is equal to rec x = x (for some x).

▶ The halting problem reduces to this one:
halts = 𝜆p. case optimise p of

{Rec(x, e) → case e of
{Var(y) → False()
; Rec(x, e) → True()
; …
}

; …
}



Computable real numbers
▶ Computable reals can be defined in many ways.
▶ One example, using signed digits:

Interval =
{(f, e) ∣ f ∈ ℕ → {−1, 0, 1}, e ∈ CExp,

e implements f}

⟦ ⟧ ∈ Interval → [−1, 1]
⟦(f, )⟧ = ∑∞

i=0 f i · 2−i−1

▶ Why signed digits? Try computing the first
digit of 0.00000… + 0.11111… (in binary
notation).



Is a computable real number
equal to zero?

▶ Is a computable real number equal to zero?

is-zero ∈ Interval → Bool
is-zero x = if ⟦x⟧ = 0 then true else false

▶ The halting problem reduces to this one:

halts = 𝜆p. not (is-zero ⌜ 𝜆n.
case terminates-in Pair(⌞ code p ⌟, n) of

{True() → One()
; False() → Zero()
}⌝)



Undecidable problems

▶ A list on Wikipedia.
▶ A list on MathOverflow.

https://en.wikipedia.org/wiki/List_of_undecidable_problems
http://mathoverflow.net/questions/11540/what-are-the-most-attractive-turing-undecidable-problems-in-mathematics


Summary

▶ Χ-computability.
▶ A self-interpreter for 𝜒.
▶ Reductions.
▶ More problems that are or are not computable.
▶ More about coding.


	Introduction
	Χ-computability
	Self-interpreter
	Reductions
	More (un)decidable problems
	Coding
	More undecidable problems
	Summary

