Lecture Computability (DIT312, DAT415)

Nils Anders Danielsson

2019-11-25

- Inductively defined sets/structural induction: General tools for defining and proving things.
- Primitive recursion: Terminating.
- Semantics: What do programs mean?
- Computability: What can/cannot be implemented?

- X-computability.
- A self-interpreter for χ .
- Reductions.
- More problems that are or are not computable.
- More about coding.

computability

• The semantics as a partial function:

$$\llbracket _ \rrbracket \in CExp \rightharpoonup CExp \\ \llbracket p \rrbracket = v \text{ if } p \Downarrow v$$

X-computable functions

Assume that we have methods for representing members of the sets A and B as closed χ expressions.

A partial function $f \in A \rightarrow B$ is χ -computable (with respect to these methods) if

 $\exists e \in CExp. \ \forall a \in A. \llbracket e \ulcorner a \urcorner \rrbracket = \ulcorner f a \urcorner.$

Note: If one side is undefined, then the other side must also be undefined.

X-computable functions

A special case:

A (total) function $f \in A \rightarrow B$ is χ -computable if there is a closed expression e such that:

$$\blacktriangleright \forall a \in A. \ e \ulcorner a \urcorner \Downarrow \ulcorner f a \urcorner.$$

What would go "wrong" if we decided to represent closed χ expressions in the following way?

A closed χ expression is represented by $\mathsf{True}()$ if it terminates, and by $\mathsf{False}()$ otherwise.

- The choice of representation is important.
- In this course (unless otherwise noted or inapplicable): The "standard" representation.
- ► It might make sense to require that the representation function 「 _ ¬ is "computable".
 - However, how should this be defined?

Addition of natural numbers is χ-computable:

 $\begin{array}{l} add \in \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N} \\ add \; (m,n) = m+n \end{array}$

 The intensional halting problem is not *χ*-computable:

> $halts \in CExp \rightarrow Bool$ halts p = if p terminates then true else false

► The semantics [[_]] is computable.

Self-

interpreter

Goal: Define $eval \in CExp$ satisfying $\forall e \in CExp. [[eval \ulcorner e \urcorner]] = \ulcorner [[e]] \urcorner.$

$\begin{array}{l} \mathbf{rec} \ eval = \lambda \ e. \ \mathbf{case} \ e \ \mathbf{of} \\ \{ \dots \\ \} \end{array}$

Self-interpreter

lambda $x \ e \Downarrow$ lambda $x \ e$

 $Lambda(x, e) \rightarrow Lambda(x, e)$

$$\underbrace{ e_1 \Downarrow \mathsf{lambda} \ x \ e}_{\mathsf{apply} \ e_1 \ \psi_2} \quad e \left[x \leftarrow v_2 \right] \Downarrow v \\ \mathsf{apply} \ e_1 \ e_2 \Downarrow v \\ \end{aligned}$$

$$\begin{array}{l} \mathsf{Apply}(e_1,e_2) \to \mathbf{case} \ eval \ e_1 \ \mathbf{of} \\ \{\mathsf{Lambda}(x,e) \to eval \ (subst \ x \ (eval \ e_2) \ e) \\ \} \end{array}$$

Exercise: Define *subst*.

Self-interpreter

$$\frac{e \ [x \leftarrow \mathsf{rec} \ x \ e] \Downarrow v}{\mathsf{rec} \ x \ e \Downarrow v}$$

$$\operatorname{Rec}(x, e) \to eval \ (subst \ x \operatorname{Rec}(x, e) \ e)$$

Self-interpreter

 $\frac{es \Downarrow^{\star} vs}{\text{const } c \ es \Downarrow \text{ const } c \ vs}$

 $Const(c, es) \rightarrow Const(c, map \ eval \ es)$

Exercise: Define map.

$$\begin{array}{cccc}
e \Downarrow \mathsf{const} \ c \ vs & Lookup \ c \ bs \ xs \ e' \\
e' \ [xs \leftarrow vs] \mapsto e'' & e'' \Downarrow v \\
\hline
\mathsf{case} \ e \ bs \Downarrow v
\end{array}$$

$$\begin{aligned} \mathsf{Case}(e, bs) &\to \mathbf{case} \ eval \ e \ \mathbf{of} \\ \{ \mathsf{Const}(c, vs) \to \mathbf{case} \ lookup \ c \ bs \ \mathbf{of} \\ \{ \mathsf{Pair}(xs, e') \to eval \ (substs \ xs \ vs \ e') \\ \} \end{aligned}$$

Exercise: Define *lookup* and *substs*.

Self-interpreter

rec eval =
$$\lambda e. case e of$$
{Lambda(x, e) \rightarrow Lambda(x, e)
; Apply(e₁, e₂) \rightarrow case eval e₁ of
{Lambda(x, e) \rightarrow eval (subst x (eval e₂) e)}
; Rec(x, e) \rightarrow eval (subst x Rec(x, e) e)
; Const(c, es) \rightarrow Const(c, map eval es)
; Case(e, bs) \rightarrow case eval e of
{Const(c, vs) \rightarrow case lookup c bs of
{Pair(xs, e') \rightarrow eval (substs xs vs e')}
}
}

Note: *subst*, *map*, *lookup* and *substs* are meta-variables that stand for (closed) expressions.

Is the following partial function χ -computable?

$$halts \in CExp \rightarrow Bool$$

halts $p =$
if p terminates then true else undefined

X-decidable

A function $f \in A \rightarrow Bool$ is χ -decidable if it is χ -computable. If not, then it is χ -undecidable.

X-semi-decidable

A function $f \in A \rightarrow Bool$ is χ -semi-decidable if there is a closed expression e such that, for all $a \in A$:

• If
$$f a =$$
true then $e \ulcorner a \urcorner \Downarrow \ulcorner$ true \urcorner .

• If f a = false then $e \lceil a \rceil$ does not terminate.

The halting problem:

 $halts \in CExp \rightarrow Bool$ halts p = if p terminates then true else false

A program witnessing the semi-decidability:

 $\lambda \, p. \, (\lambda \,_. \, \mathsf{True}()) \, (\mathit{eval} \, p)$

Reductions

Reductions (one variant)

A χ -reduction of $f \in A \rightarrow B$ to $g \in C \rightarrow D$ consists of a proof showing that, if g is χ -computable, then f is χ -computable.

Reductions (one variant)

A χ -reduction of $f \in A \rightarrow B$ to $g \in C \rightarrow D$ consists of a proof showing that, if g is χ -computable, then f is χ -computable.

- ► If f is reducible to g, and f is not computable, then g is not computable.
- Last week we proved that the halting problem is undecidable by reducing another problem to it.

More (un)decidable problems

Semantic equality

Are two closed χ expressions semantically equal?

$$\begin{array}{l} equal \in \textit{CExp} \times \textit{CExp} \rightarrow \textit{Bool} \\ equal (e_1, e_2) = \\ \mathbf{if} \llbracket e_1 \rrbracket = \llbracket e_2 \rrbracket \ \mathbf{then \ true \ else \ false} \end{array}$$

The halting problem reduces to this one:

$$halts = \lambda p. not (equal \operatorname{Pair}(p, \lceil \operatorname{rec} x = x \rceil))$$

Pointwise equality

Pointwise equality:

 $\begin{array}{l} pointwise-equal \in \ CExp \times \ CExp \rightarrow Bool\\ pointwise-equal \ (e_1, e_2) = \\ \mathbf{if} \ \forall \ e \in \ CExp. \ \llbracket e_1 \ e \rrbracket = \llbracket e_2 \ e \rrbracket\\ \mathbf{then \ true \ else \ false} \end{array}$

The previous problem reduces to this one:

$$\begin{array}{l} equal = \lambda \, p. \, \mathbf{case} \, \, p \, \mathbf{of} \\ \{ \mathsf{Pair}(e_1, e_2) \rightarrow \\ pointwise\text{-} equal \\ \mathsf{Pair}(\mathsf{Lambda}(\mathsf{Zero}(), e_1), \\ \mathsf{Lambda}(\mathsf{Zero}(), e_2)) \\ \} \end{array}$$

Termination in *n* steps

• Termination in *n* steps:

 $terminates\text{-}in \in CExp \times \mathbb{N} \rightarrow Bool$ terminates-in (e, n) = $\mathbf{if} \exists v. \exists p \in e \Downarrow v. \mid p \mid \leq n$ $\mathbf{then true else false}$

|p|: The number of rules in the derivation tree.

Decidable: We can define a variant of the self-interpreter that tries to evaluate e but stops if more than n rules are needed.

Representation

- How do we represent a χ -computable function?
- For instance a member of the set

$$\{f \in \mathbb{N} \to \mathbb{N} \mid f \text{ is } \chi \text{-computable} \}.$$

- By the representation of one of the closed expressions witnessing the computability of the function. However, which one?
- One solution: Switch to

 $\{(f, e) \mid f \in \mathbb{N} \to \mathbb{N}, e \in CExp, e \text{ implements } f\},\$

and define
$$\lceil (f, e) \rceil = \lceil e \rceil$$
.

Is the following problem χ -decidable for A = Bool? What if $A = \mathbb{N}$?

$$let Fun = \{ (f, e) \mid f \in A \rightarrow Bool, e \in CExp, \\ e \text{ implements } f \} in$$

 $\begin{array}{l} \textit{pointwise-equal'} \in \textit{Fun} \times \textit{Fun} \rightarrow \textit{Bool} \\ \textit{pointwise-equal'} \ ((f,_),(g,_)) = \\ \mathbf{if} \forall \ a \in A. \ f \ a = g \ a \ \mathbf{then} \ \mathbf{true} \ \mathbf{else} \ \mathbf{false} \end{array}$

Hint: Use eval or terminates-in.

Pointwise equality of computable functions in $Bool \rightarrow Bool$

The function *pointwise-equal'* is decidable.
Implementation:

 $\begin{array}{l} pointwise-equal' = \lambda \, p. \, \mathbf{case} \, p \, \mathbf{of} \\ \{ \mathsf{Pair}(f,g) \rightarrow \\ and \, (equal_{Bool} \, (eval \, \mathsf{Apply}(f, \ulcorner \, \mathsf{True}() \urcorner))) \\ (eval \, \mathsf{Apply}(g, \ulcorner \, \mathsf{True}() \urcorner))) \\ (equal_{Bool} \, (eval \, \mathsf{Apply}(f, \ulcorner \, \mathsf{False}() \urcorner))) \\ (eval \, \mathsf{Apply}(g, \ulcorner \, \mathsf{False}() \urcorner))) \end{array}$

Pointwise equality of computable functions in $Bool \rightarrow Bool$

The function *pointwise-equal'* is decidable.
Implementation:

$$\begin{array}{l} pointwise-equal' = \lambda \ p. \ \mathbf{case} \ p \ \mathbf{of} \\ \{ \mathsf{Pair}(f,g) \rightarrow \\ and \ (equal_{Bool} \ (eval \ \ f \ \mathsf{True}() \)) \\ (eval \ \ g \ \mathsf{True}() \)) \\ (equal_{Bool} \ (eval \ \ f \ \mathsf{False}() \)) \\ (eval \ \ g \ \mathsf{False}() \)) \\ \} \end{array}$$

Pointwise equality of computable functions in $\mathbb{N} \rightarrow Bool$

The function *pointwise-equal'* is undecidable.
The halting problem reduces to it:

$$\begin{split} halts &= \lambda \, p. \, not \, (pointwise-equal' \\ \mathsf{Pair}(\ulcorner \, \lambda \, n. \, terminates-in \, \mathsf{Pair}(\llcorner \, code \, p \, \lrcorner, n) \urcorner, \\ \ulcorner \, \lambda \, _. \, \mathsf{False}() \urcorner)) \end{split}$$

Coding

One way to give a semantics to $__$:

• $_ _$ is a constructor of a variant of *Exp*:

$$\frac{e \in Exp}{e \ \subseteq \overline{Exp}} \qquad \frac{e_1 \in \overline{Exp}}{\mathsf{apply}} \quad e_2 \in \overline{Exp}$$

► This variant is the domain of 「_ ¬:

L — J

• Examples:

► Note that you do not have to use ___.

The reduction used above:

$$\begin{split} halts &= \lambda \, p. \; not \; (pointwise-equal' \\ \mathsf{Pair}(\ulcorner \lambda \, n. \; terminates-in \; \mathsf{Pair}(\llcorner \; code \; p \; \lrcorner, n) \; \urcorner, \\ \ulcorner \lambda \; _. \; \mathsf{False}() \; \urcorner)) \end{split}$$

Expanded:

```
\begin{array}{l} \lambda \ p. \ not \ (pointwise-equal' \\ {\sf Pair}({\sf Lambda}(\ulcorner n\urcorner, \\ {\sf Apply}(\ulcorner \ terminates-in\urcorner, \\ {\sf Const}(\ulcorner {\sf Pair}\urcorner, \\ {\sf Cons}( \ code \ p, \\ {\sf Cons}({\sf Var}(\ulcorner n\urcorner), {\sf Nil}()))))), \\ \ulcorner \lambda\_. \ {\sf False}()\urcorner)) \end{array}
```


Probably not what you want:

$$\lambda \, p. \, \lceil \, eval \, p \, \rceil = \lambda \, p. \, \mathsf{Apply}(\lceil \, eval \, \rceil, \mathsf{Var}(\lceil \, p \, \rceil))$$

If p corresponds to 0:

 $\lambda \, p. \, \mathsf{Apply}(\ulcorner \, eval \urcorner, \mathsf{Var}(\mathsf{Zero}()))$

The argument p is ignored.

Perhaps more useful:

$$\lambda \, p. \, \lceil \, eval \, \lfloor \, code \, p \, \lrcorner \, \urcorner = \lambda \, p. \, \mathsf{Apply}(\lceil \, eval \, \urcorner, \, code \, \, p)$$

For any closed expression e:

$$(\lambda \, p. \ulcorner eval _ code \ p _ \urcorner) \ulcorner e \urcorner \Downarrow \ulcorner eval \ulcorner e \urcorner \urcorner$$

What is the result of evaluating $(\lambda p. eval \ eval \ code \ p \) \ \ Zero() \ ?$

- 1. Nothing
- Zero()
 Zero()¹
 ^CZero()¹
 ^CZero()¹
 ^CZero()¹

Recall that $\llbracket eval \ e \ \rrbracket = \ \llbracket e \rrbracket \ (for \ e \in CExp).$

- The language χ is untyped.
- However, it may be instructive to see certain programs as typed.

Types

Rep A: Representations of programs of type *A*.
Some examples:

: Bool
: Rep Bool
: Bool
$: (A \to B) \to A \to B$
$: Rep \; (A \to B) \to$
$Rep \ A \to Rep \ B$
$: Rep \; A \to Rep \; A$
$: Rep \; A \to Rep \; (Rep \; A)$
$: Rep \; A \times \mathbb{N} \to Bool$
$: \operatorname{Rep} (\operatorname{Rep} A \times \mathbb{N} \to \operatorname{Bool})$

The reduction used above:

$$\begin{split} halts &= \lambda \ p. \ not \ (pointwise-equal' \\ \mathsf{Pair}(\ulcorner \lambda \ n. \ terminates-in \ \mathsf{Pair}(\llcorner \ code \ p \ , n) \ \urcorner, \\ \ulcorner \lambda \ _. \ \mathsf{False}() \ \urcorner)) \end{split}$$

lf

 $\begin{array}{l} \textit{pointwise-equal'}:\\ \textit{Rep} \ (\mathbb{N} \rightarrow \textit{Bool}) \times \textit{Rep} \ (\mathbb{N} \rightarrow \textit{Bool}) \rightarrow \textit{Bool} \end{array}$

then

 $halts: Rep A \rightarrow Bool.$

More undecidable problems

Is the following function χ -computable?

$$optimise \in CExp \rightarrow CExp$$

 $optimise \ e =$
some optimally small expression with
the same semantics as e

Size: The number of constructors in the abstract syntax (*Exp*, *Br*, *List*, not *Var* or *Const*).

Full employment theorem for compiler writers

- ► An optimally small non-terminating expression is equal to rec x = x (for some x).
- The halting problem reduces to this one:

$$\begin{aligned} halts &= \lambda \, p. \, \mathbf{case} \ optimise \ p \ \mathbf{of} \\ \{ \mathsf{Rec}(x, e) \rightarrow \mathbf{case} \ e \ \mathbf{of} \\ \{ \mathsf{Var}(y) \ \rightarrow \mathsf{False}() \\ ; \mathsf{Rec}(x, e) \rightarrow \mathsf{True}() \\ ; \\ \} \end{aligned}$$

Computable real numbers

- Computable reals can be defined in many ways.
- One example, using signed digits:

$$\begin{array}{l} \textit{Interval} = \\ \{ (f, e) \mid f \in \mathbb{N} \rightarrow \{-1, 0, 1\}, e \in \textit{CExp}, \\ e \text{ implements } f \} \end{array}$$

$$\begin{split} \llbracket _ \rrbracket \in Interval \to \llbracket -1, 1 \rrbracket \\ \llbracket (f, _) \rrbracket = \sum_{i=0}^{\infty} f \, i \cdot 2^{-i-1} \end{split}$$

► Why signed digits? Try computing the first digit of 0.00000... + 0.11111... (in binary notation).

Is a computable real number equal to zero?

Is a computable real number equal to zero?

 $is\text{-}zero \in Interval \rightarrow Bool$ $is\text{-}zero \ x = \mathbf{if} \llbracket x \rrbracket = 0 \mathbf{then true else false}$

• The halting problem reduces to this one:

$$\begin{split} halts &= \lambda \, p. \; not \; (is\text{-}zero \ulcorner \lambda \, n. \\ \textbf{case} \; terminates\text{-}in \; \textsf{Pair}(_ code \; p \lrcorner, n) \; \textbf{of} \\ & \{ \mathsf{True}() \to \mathsf{One}() \\ & ; \; \textsf{False}() \to \mathsf{Zero}() \\ & \} \urcorner) \end{split}$$

- ► A list on Wikipedia.
- A list on MathOverflow.

- X-computability.
- A self-interpreter for χ .
- Reductions.
- More problems that are or are not computable.
- More about coding.