Lecture Computability (DIT312, DAT415)

Nils Anders Danielsson

2019-11-06

- Inductively defined sets.
- Functions defined by primitive recursion.
- Proofs by structural induction.

Natural numbers

The set of natural numbers, \mathbb{N} , is defined inductively in the following way:

- zero $\in \mathbb{N}$.
- If $n \in \mathbb{N}$, then suc $n \in \mathbb{N}$.

We can construct natural numbers by using these rules a finite number of times. Examples:

•
$$0 =$$
zero.

•
$$1 = suc zero.$$

•
$$2 = suc (suc zero).$$

The value zero and the function suc are called *constructors*.

An alternative way to present the rules:

$$\frac{n \in \mathbb{N}}{\operatorname{zero} \in \mathbb{N}} \qquad \qquad \frac{n \in \mathbb{N}}{\operatorname{suc} n \in \mathbb{N}}$$

Propositions, predicates and relations

- A proposition is something that can (perhaps) be proved or disproved.
- ► A predicate on a set A is a function from A to propositions.
- ► A *binary relation* on two sets *A* and *B* is a function from *A* and *B* to propositions.
- Relations can also have more arguments.

Two natural numbers are equal if they are built up by the same constructors.

We can see this as an inductively defined relation:

$$rac{1}{zero = zero}$$
 $rac{1}{suc m = suc n}$

m = n

(The names of the constructors have been omitted.)

We can define a function from $\mathbb N$ to a set A in the following way:

- A value $z \in A$, the function's value for zero.
- A function s ∈ N → A → A, that given n ∈ N and the function's value for n gives the function's value for suc n.

A definition by primitive recursion can be given the following schematic form:

$$\begin{array}{l} f \in \mathbb{N} \to A \\ f \, {\sf zero} &= z \\ f \, ({\sf suc} \, \, n) = s \, n \, (f \, n) \end{array}$$

We can capture this scheme with a higher-order function:

 $rec \in A \to (\mathbb{N} \to A \to A) \to \mathbb{N} \to A$ $rec \ z \ s \ zero = z$ $rec \ z \ s \ (suc \ n) = s \ n \ (rec \ z \ s \ n)$

Example: Equality with zero

- ► Can we define *is-zero* ∈ N → Bool using primitive recursion?
- ▶ Let "A" be Bool.
- Scheme:

$$is$$
-zero $\in \mathbb{N} \to Bool$
 is -zero zero $=$?
 is -zero (suc n) $=$?

Example: Equality with zero

- ► Can we define *is-zero* ∈ N → Bool using primitive recursion?
- ▶ Let "A" be Bool.
- Scheme:

is-zero $\in \mathbb{N} \to Bool$ is-zero zero = true is-zero (suc n) = false

Example: Equality with zero

- ► Can we define *is-zero* ∈ N → Bool using primitive recursion?
- ▶ Let "A" be Bool.
- With the higher-order function:

$$is\text{-}zero \in \mathbb{N} \to Bool$$

 $is\text{-}zero = rec \text{ true } (\lambda n r. \text{ false})$

- Can we define add ∈ N → N → N using primitive recursion?
- Let "A" be $\mathbb{N} \to \mathbb{N}$.
- Scheme:

$$add \in \mathbb{N} \to (\mathbb{N} \to \mathbb{N})$$

add zero = ?
add (suc m) = ?

- Can we define add ∈ N → N → N using primitive recursion?
- Let "A" be $\mathbb{N} \to \mathbb{N}$.
- Scheme:

$$\begin{array}{l} add \in \mathbb{N} \rightarrow (\mathbb{N} \rightarrow \mathbb{N}) \\ add \, \mathsf{zero} &= \lambda \, n. \, n \\ add \, (\mathsf{suc} \, m) = ? \end{array}$$

- Can we define add ∈ N → N → N using primitive recursion?
- Let "A" be $\mathbb{N} \to \mathbb{N}$.
- Scheme:

$$\begin{array}{l} add \in \mathbb{N} \to (\mathbb{N} \to \mathbb{N}) \\ add \; \mathsf{zero} &= \lambda \; n. \; n \\ add \; (\mathsf{suc} \; m) = \lambda \; n. \; ? \end{array}$$

- Can we define add ∈ N → N → N using primitive recursion?
- Let "A" be $\mathbb{N} \to \mathbb{N}$.
- Scheme:

$$\begin{array}{l} add \in \mathbb{N} \rightarrow (\mathbb{N} \rightarrow \mathbb{N}) \\ add \, {\sf zero} &= \lambda \, n. \, n \\ add \, ({\sf suc} \, m) = \lambda \, n. \, {\sf suc} \, (add \, m \, n) \end{array}$$

$$\begin{array}{l} add \in \mathbb{N} \to (\mathbb{N} \to \mathbb{N}) \\ add \, {\sf zero} &= \lambda \, n. \, n \\ add \, ({\sf suc} \, m) = \lambda \, n. \, {\sf suc} \, (add \, m \, n) \end{array}$$

Which of the following terms define addition?

1.
$$rec (\lambda n. n) (\lambda m r. \lambda n. suc (r m n))$$

2.
$$rec (\lambda n. n) (\lambda m r. \lambda n. suc (r n))$$

3. $rec (\lambda n. n) (\lambda m r. \lambda n. suc (r m))$

Another way to define addition:

- Let us fix $m \in \mathbb{N}$.
- Now we can define "addition by m".
- Let "A" be \mathbb{N} .
- Scheme:

$$\begin{array}{l} add'_m \in \mathbb{N} \to \mathbb{N} \\ add'_m \; \mathsf{zero} &= m \\ add'_m \; (\mathsf{suc} \; n) = \mathsf{suc} \; (add'_m \; n) \end{array}$$

Addition again

Another way to define addition:

Scheme:

$$\begin{array}{l} add' \in \mathbb{N} \to \mathbb{N} \to \mathbb{N} \\ add' \ m \, {\sf zero} &= m \\ add' \ m \, ({\sf suc} \ n) = {\sf suc} \ (add' \ m \ n) \end{array}$$

Using rec:

$$\begin{array}{l} add' \in \mathbb{N} \rightarrow \mathbb{N} \rightarrow \mathbb{N} \\ add' \ m = \mathsf{rec} \ m \left(\lambda \, n \ r. \, \mathsf{suc} \ r\right) \end{array}$$

Multiplication by m, defined recursively:

 $\begin{aligned} & mul \in \mathbb{N} \to \mathbb{N} \to \mathbb{N} \\ & mul \ m \ \mathsf{zero} \quad = \mathsf{zero} \\ & mul \ m \ (\mathsf{suc} \ n) = add \ m \ (mul \ m \ n) \end{aligned}$

Complete the following definition of multiplication. You can make use of addition (*add*).

 $mul \ m = rec \ ? \ (\lambda \ n \ r. \ ?)$

Structural induction

Let us assume that we have a predicate P on \mathbb{N} . If we can prove the following two statements, then we have proved $\forall n \in \mathbb{N}$. P n:

- ► P zero.
- $\forall n \in \mathbb{N}$. $P \ n$ implies $P \ (\mathsf{suc} \ n)$.

Theorem: $\forall m \in \mathbb{N}$. add m zero = m. Proof:

- Let us use structural induction, with the predicate $P = \lambda m$. add m zero = m.
- There are two cases:

 $P \text{ zero } \leftarrow \{ \text{By definition.} \}$ add zero zero = zero $\leftarrow \{ \text{By definition.} \}$ zero = zero

Theorem: $\forall m \in \mathbb{N}$. add m zero = m. Proof:

- Let us use structural induction, with the predicate P = λ m. add m zero = m.
- There are two cases:

 $\begin{array}{rcl} P (\mathsf{suc} \ m) & \Leftarrow \\ add (\mathsf{suc} \ m) \ \mathsf{zero} = \mathsf{suc} \ m & \Leftarrow \\ \mathsf{suc} \ (add \ m \ \mathsf{zero}) = \mathsf{suc} \ m & \Leftarrow \\ add \ m \ \mathsf{zero} = m & \Leftarrow \\ P \ m \end{array}$

More inductively defined sets

The cartesian product of two sets A and B is defined inductively in the following way:

$$\frac{x \in A \qquad y \in B}{\text{pair } x \ y \in A \times B}$$

Notice that this definition is "non-recursive".

Scheme for primitive recursion for pairs:

$$f \in A \times B \to C f (pair x y) = p x y$$

The corresponding higher-order function:

 $uncurry \in (A \to B \to C) \to A \times B \to C$ uncurry p (pair x y) = p x y

Structural induction

Let us assume that we have a predicate P on $A \times B$. If we can prove the following statement, then we have proved $\forall p \in A \times B$. P p:

• $\forall x \in A$. $\forall y \in B$. P (pair x y).

The set of finite lists containing natural numbers is defined inductively in the following way:

	$x \in \mathbb{N}$	xs	\in Nat-list
$\overline{nil \in \mathit{Nat-list}}$	cons x :	$xs \in$	Nat-list

Primitive recursion

Scheme for primitive recursion for natural number lists:

$$f \in Nat\text{-}list \to A$$

f nil = n
f (cons x xs) = c x xs (f xs)

The corresponding higher-order function:

$$\begin{array}{ll} listrec \in A \rightarrow (\mathbb{N} \rightarrow Nat\text{-}list \rightarrow A \rightarrow A) \rightarrow \\ Nat\text{-}list \rightarrow A \\ listrec \ n \ c \ \text{nil} &= n \\ listrec \ n \ c \ (\text{cons} \ x \ xs) = c \ x \ xs \ (listrec \ n \ c \ xs) \end{array}$$

Note that the recursion does not descend into the natural numbers.

Structural induction

Let us assume that we have a predicate P on *Nat-list.* If we can prove the following statements, then we have proved $\forall xs \in Nat\text{-list. } P xs$:

- ► *P* nil.
- ▶ $\forall x \in \mathbb{N}$. $\forall xs \in Nat\text{-list}$. P xs implies P (cons x xs).

The set of finite lists containing elements of the set A is defined inductively in the following way:

$$\frac{x \in A \qquad xs \in List A}{\operatorname{cons} x \, xs \in List A}$$

Scheme for primitive recursion for lists:

$$f \in List \ A \to B$$

f nil = n
f (cons x xs) = c x xs (f xs)

The corresponding higher-order function:

$$\begin{array}{ll} listrec \in B \to (A \to List \; A \to B \to B) \to \\ List \; A \to B \\ listrec \; n \; c \; \mathsf{nil} &= n \\ listrec \; n \; c \; (\mathsf{cons} \; x \; xs) = c \; x \; xs \; (listrec \; n \; c \; xs) \end{array}$$

Structural induction

Let us assume that we have a predicate P on List A. If we can prove the following statements, then we have proved $\forall xs \in List A. P xs$:

- ► *P* nil.
- ▶ $\forall x \in A$. $\forall xs \in List A$. *P xs* implies *P* (cons *x xs*).

Use *listrec* and *uncurry* to define a function from *List* $(A \times B)$ to *List* B that replaces every pair in the list with its second component.

listrec??

Use *listrec* and *uncurry* to define a function from *List* $(A \times B)$ to *List* B that replaces every pair in the list with its second component.

listrec nil ($\lambda p \ ps \ r.$ cons (*uncurry* ($\lambda x \ y.$?) p)?)

Pattern

- Given an inductive definition of the kind presented here, we can derive:
 - The structural induction principle.
 - The primitive recursion scheme.
- Pattern:
 - One case per constructor.
 - One argument per constructor argument, plus an extra argument (for induction: an inductive hypothesis) per *recursive* constructor argument.

Pattern (with recursive constructor arguments last):

$$\begin{array}{l} drec \in \text{One assumption per constructor} \rightarrow D \rightarrow A \\ drec \ f_1 \ \dots \ f_k \ (\mathsf{c}_1 \ x_1 \ \dots \ x_{n_1}) = \\ f_1 \ x_1 \ \dots \ x_{n_1} \ (drec \ f_1 \ \dots \ f_k \ x_{i_1}) \ \dots \ (drec \ f_1 \ \dots \ f_k \ x_{n_1}) \\ \vdots \\ drec \ f_1 \ \dots \ f_k \ (\mathsf{c}_k \ x_1 \ \dots \ x_{n_k}) = \\ f_k \ x_1 \ \dots \ x_{n_k} \ (drec \ f_1 \ \dots \ f_k \ x_{i_k}) \ \dots \ (drec \ f_1 \ \dots \ f_k \ x_{n_k}) \end{array}$$

Define the booleans inductively and write down the structural induction principle. How many cases does the principle have?

► 1 ► 2

► 3 ► 4

Bonus question: Can you think of an inductive definition for which the answer would be 0?

- Inductively defined sets.
- Functions defined by primitive recursion.
- Proofs by structural induction.