
Lecture
Computability

(DIT312, DAT415)

Nils Anders Danielsson

2019-11-04



Can every function be implemented?
▶ No (given some assumptions).
▶ This lecture: Two proofs (sketches).



General information

See the course web pages.



Comparing
sets’ sizes



Injections

▶ Definition: 𝑓 ∈ 𝐴 → 𝐵 is injective if
∀𝑥, 𝑦 ∈ 𝐴. 𝑓 𝑥 = 𝑓 𝑦 implies 𝑥 = 𝑦.

▶ If there is an injection from 𝐴 to 𝐵,
then 𝐵 is at least as “large” as 𝐴.



Surjections

▶ Definition: 𝑓 ∈ 𝐴 → 𝐵 is surjective if
∀𝑏 ∈ 𝐵. ∃𝑎 ∈ 𝐴. 𝑓 𝑎 = 𝑏.

▶ If there is a surjection from 𝐴 to 𝐵,
then there is an injection from 𝐵 to 𝐴
(assuming the axiom of choice).

▶ Thus, if there is a surjection from 𝐴 to 𝐵,
then 𝐴 is at least as “large” as 𝐵.



Left/right inverses

For functions 𝑓 ∈ 𝐴 → 𝐵, 𝑔 ∈ 𝐵 → 𝐴:
▶ Definition: 𝑔 is a left inverse of 𝑓 if

∀𝑎 ∈ 𝐴. 𝑔 (𝑓 𝑎) = 𝑎.
▶ Definition: 𝑔 is a right inverse of 𝑓 if

∀𝑏 ∈ 𝐵. 𝑓 (𝑔 𝑏) = 𝑏.
▶ If 𝑓 has a left inverse, then it is injective.
▶ If 𝑓 has a right inverse, then it is surjective.



Bijections

▶ Definition: 𝑓 ∈ 𝐴 → 𝐵 is bijective if
it is both injective and surjective.

▶ If there is a bijection from 𝐴 to 𝐵,
then 𝐴 and 𝐵 have the same “size”.

▶ A function is bijective iff
it has a left and right inverse.

▶ If there is an injection from 𝐴 to 𝐵,
and an injection from 𝐵 to 𝐴,
then there is a bijection from 𝐴 to 𝐵
(assuming excluded middle).



Quiz

Which of the following functions are
injective? Surjective?
▶ 𝑓 ∈ ℕ → ℕ, 𝑓 𝑛 = 𝑛 + 1.
▶ 𝑔 ∈ ℤ → ℤ, 𝑔 𝑖 = 𝑖 + 1.

▶ ℎ ∈ ℕ → Bool, ℎ 𝑛 = {true, if 𝑛 is even,
false, otherwise.

Respond at https://pingo.coactum.de/,
using a code that I provide.

https://pingo.coactum.de/


Countable,
uncountable



Countable sets

▶ 𝐴 is countable if there is
an injection from 𝐴 to ℕ.

▶ If there is no such injection,
then 𝐴 is uncountable.

▶ 𝐴 is countably infinite if there is
a bijection from 𝐴 to ℕ.



Countable sets

▶ There is an injection from 𝐴 to 𝐵 iff
𝐴 = ∅ or there is a surjection from 𝐵 to 𝐴
(assuming the axiom of choice).

▶ Thus 𝐴 is countable iff
𝐴 = ∅ or there is a surjection from ℕ to 𝐴.



Quiz

The set of finite strings of characters
is infinite. Is it countable?

1. Yes.
2. No.



If 𝐴 is countable, then List 𝐴 is countable.
Proof sketch:
▶ We are given an injection 𝑓 ∈ 𝐴 → ℕ.
▶ Define 𝑔 ∈ List 𝐴 → ℕ by

𝑔 (𝑥1, 𝑥2, …, 𝑥𝑛) =
21 + 𝑓 𝑥1 31 + 𝑓 𝑥2 ⋯ 𝑝1 + 𝑓 𝑥𝑛𝑛 ,

where 𝑝𝑛 is the 𝑛-th prime number.
▶ By the fundamental theorem of arithmetic and

the injectivity of 𝑓 we get that 𝑔 is injective.



Uncountable sets

▶ Is every set countable?
▶ No.
▶ Diagonalisation can be used to show that

certain sets are uncountable.



ℕ → ℕ is uncountable

Proof (using the axiom of choice):
▶ Assume that ℕ → ℕ is countable.
▶ The set is non-empty, so we get a surjection

𝑓 ∈ ℕ → (ℕ → ℕ).
▶ Define 𝑔 ∈ ℕ → ℕ by 𝑔 𝑛 = 𝑓 𝑛 𝑛 + 1.
▶ By surjectivity we get that 𝑔 = 𝑓 𝑖 for some 𝑖.
▶ Thus 𝑓 𝑖 𝑖 = 𝑔 𝑖 = 𝑓 𝑖 𝑖 + 1, which is impossible.



Diagonalisation

The function 𝑔 differs from every function
enumerated by 𝑓 on the “diagonal”:

0 1 2 3 ⋯
𝑓 0 +1
𝑓 1 +1
𝑓 2 +1
𝑓 3 +1
⋮



Not every function is computable
Proof sketch (classical):
▶ The set of programs 𝑃 of a typical

programming language is countable and
nonempty, thus there is a surjection
from ℕ to 𝑃 .

▶ There is no surjection from ℕ to ℕ → ℕ.
▶ Thus there is no surjection from 𝑃 to ℕ → ℕ

(the composition of two surjections is
surjective).

▶ Thus, however you give semantics to programs,
it is not the case that every function is the
semantics of some program.



Quiz

If we define 𝑔 𝑛 = 𝑓 𝑛 (2𝑛) + 1, does the
diagonalisation argument still work? [BN]

0 1 2 3 4 5 6 ⋯
𝑓 0 +1
𝑓 1 +1
𝑓 2 +1
𝑓 3 +1
⋮



The halting
problem



Uncomputable functions

▶ Can we find an explicit example of a function
that cannot be computed?

▶ What does “can be computed” mean?
▶ Let us restrict attention to a

“typical” programming language.
▶ In that case the answer is yes.
▶ A standard example is the halting problem.



The halting problem
Given the source code of a program and its input,
determine whether the program will halt when run
with the given input.



The halting problem is not computable

Proof sketch (with hidden assumptions):
▶ Assume that the halting problem is

implemented by halts.
▶ Define p x = if halts x x then loop else skip.
▶ Consider the application p ⌜p ⌝,

where ⌜p ⌝ is the source code of p.
▶ The result of halts ⌜p ⌝ ⌜p ⌝ must be

true or false.



Quiz

Can the result of halts ⌜p ⌝ ⌜p ⌝ be true?
1. Yes.
2. No.



The halting problem is not computable

Proof sketch (continued):
▶ If halts ⌜p ⌝ ⌜p ⌝ = true, then:

▶ p ⌜p ⌝ terminates (specification of halts).
▶ p ⌜p ⌝ = loop, which does not terminate.

▶ If halts ⌜p ⌝ ⌜p ⌝ = false, then:
▶ p ⌜p ⌝ does not terminate.
▶ p ⌜p ⌝ = skip, which does terminate.

▶ Either way, we get a contradiction.



Models of
computation



Models of computation

▶ The proof is based on some assumptions.
▶ For instance, the programming language allows

us to define if−then−else and loop, with the
intended semantics.

▶ Later in the course we will be more precise.
▶ To make it easier to study questions of

computability we will use idealised models of
computation.



Models of computation

One model:
▶ The primitive recursive functions.
▶ Functional in character.
▶ All programs terminate.



Models of computation

Another model:
▶ A lambda calculus with pattern matching

called 𝜒.
▶ Functional in character.
▶ Some programs do not terminate.



Models of computation

Yet another model:
▶ Turing machines.
▶ Imperative in character.
▶ Some programs do not terminate.



The
Church-Turing

thesis



Models of computation

▶ How are these models related?
▶ Can one say anything about

programming in general?
▶ It has been noted that many

models of computation are,
in some sense, equivalent:
▶ Turing machines.
▶ The (untyped) 𝜆-calculus.
▶ The recursive functions.
▶ …



The Church-Turing thesis
Every effectively calculable function
on the positive integers can be computed
using a Turing machine.

▶ This is one variant of the thesis.
▶ We will define “can be computed using a

Turing machine” more precisely later.



The Church-Turing thesis
Every effectively calculable function
on the positive integers can be computed
using a Turing machine.

▶ This is one variant of the thesis.
▶ We will define “can be computed using a

Turing machine” more precisely later.



Effectively calculable

“Effectively calculable” means roughly that the
function can be computed by a human being
▶ following exact instructions,

with a finite description,
▶ in finite (but perhaps very long) time,
▶ using an unlimited amount of pencil and paper,
▶ and no ingenuity.

(See Copeland.)



The Church-Turing thesis

▶ The thesis is a conjecture.
▶ “Effectively calculable” is an intuitive notion,

not a formal definition.
▶ However, the thesis is widely believed to be

true.



Turing-complete
A programming language is Turing-complete if every
Turing machine can be simulated using a program
written in this language.

▶ This is one variant of the definition.
▶ We have not specified what it means to

simulate a Turing machine.



Turing-complete
A programming language is Turing-complete if every
Turing machine can be simulated using a program
written in this language.

▶ This is one variant of the definition.
▶ We have not specified what it means to

simulate a Turing machine.



Only
terminating
programs?



Only terminating programs?

▶ Every primitive recursive function terminates.
▶ Easy to solve the halting problem!
▶ Can we have a model of computation that

includes exactly those functions on the natural
numbers that can be implemented using Turing
machines that always halt?

▶ No (given some assumptions).



Only terminating programs?

▶ Every primitive recursive function terminates.
▶ Easy to solve the halting problem!
▶ Can we have a model of computation that

includes exactly those functions on the natural
numbers that can be implemented using Turing
machines that always halt?

▶ No (given some assumptions).



Only terminating programs?

The following assumptions are contradictory:
▶ The set of valid programs Prog ⊆ ℕ.
▶ For every computable function f ∈ ℕ → ℕ

there is a program ⌜f ⌝ ∈ Prog.
▶ There is a computable function

eval ∈ ℕ → ℕ → ℕ satisfying eval ⌜f ⌝ n = f n.

(See Brown and Palsberg.)



Only terminating programs?

Proof sketch:
▶ Define the computable function f ∈ ℕ → ℕ by

f n = eval n n + 1.
▶ We get

f ⌜f ⌝
= eval ⌜f ⌝ ⌜f ⌝ + 1
= f ⌜f ⌝ + 1,

which is impossible.



A variant of the previous argument
Assumptions:
▶ Programs: Prog.
▶ Computable semantics:

⟦ ⟧ ∈ Prog × ℕ → ℕ

▶ A coding function:

code ∈ Prog → ℕ

▶ A computable left inverse of code:

decode ∈ ℕ → Prog



A variant of the previous argument

Goal: Prove that the following statement is false:

∀ g ∈ ℕ → ℕ. g is computable ⇒
∃ g ∈ Prog. ∀ n ∈ ℕ. ⟦(g, n)⟧ = g n



A variant of the previous argument

Goal: Prove that the following statement is true:

∃ g ∈ ℕ → ℕ. g is computable ∧
(∀g ∈ Prog. (∀n ∈ ℕ. ⟦(g, n)⟧ = g n) → ⊥)



A variant of the previous argument
▶ Define g ∈ ℕ → ℕ by

g n = ⟦(decode n, n)⟧ + 1.
Note that g is computable.

▶ Assume that we have g ∈ Prog, with

∀ n ∈ ℕ. ⟦(g, n)⟧ = g n.
▶ We get a contradiction:

g (code g) =
⟦(decode (code g), code g)⟧ + 1 =
⟦(g, code g)⟧ + 1 =
g (code g) + 1



Summary

▶ Injections, surjections, bijections.
▶ Countable and uncountable sets.
▶ Diagonalisation.
▶ The halting problem.
▶ Models of computation.
▶ The Church-Turing thesis.

Please try to solve the recommended exercises
before coming to the tutorial, and read the
recommended texts before coming to the lecture.



Summary

▶ Injections, surjections, bijections.
▶ Countable and uncountable sets.
▶ Diagonalisation.
▶ The halting problem.
▶ Models of computation.
▶ The Church-Turing thesis.

Please try to solve the recommended exercises
before coming to the tutorial, and read the
recommended texts before coming to the lecture.


	Introduction
	Comparing sets' sizes
	Countable, uncountable
	The halting problem
	Models of computation
	The Church-Turing thesis
	Only terminating programs?
	Summary

