Nils Anders Danielsson

2019-12-16

» Repetition (mainly). Please interrupt if you
want to discuss something in more detail.

» Course evaluation.

Models of computation

v

Actual hardware or programming languages:
Lots of (irrelevant?) details.

In this course: ldealised models of
computation.

PRF, RF.
X.

Turing machines.

v

v

v

v

The Church-Turing thesis

» The thesis:
Every effectively calculable function on the
positive integers can be computed using a
Turing machine.

» Widely believed to be true.
» Many models are Turing-complete.

Comparing sets’ sizes

» Injections, surjections, bijections.

» Countable (injection to N), uncountable.
» Diagonalisation.
» Not every function is computable.

Inductively defined sets
An inductively defined set:

re A xs € List A
nil € List A cons z s € List A

Primitive recursion:

listrec e B— (A — List A— B— B) —
List A— B

listrec n c nil =n

listrec n ¢ (cons x xs) = ¢ x xs (listrec n ¢ s)

Inductively defined sets

An inductively defined set:

re A xs € List A
nil € List A cons z s € List A

Pattern (with recursive constructor arguments last):

drec € One assumption per constructor - D — A
drec fy ... fr, (¢y 21 ooz,) =
fray @y, (drec fi o fy o) o (drec fy .. fi 1)

drec fy ... fi (¢g 7y oo 1,) =
fe w1 ooz, (drec fy o fy ;) o (drec fy o fi, 3,)

Inductively defined sets
An inductively defined set:

re A xs € List A
nil € List A cons z s € List A

Structural induction (P: a predicate on List A):

P nil
Ve A. Vas € List A. P xs= P (cons z xs)

Vs € List A. P xs

Quiz

Write down the “type” of one of the higher-order
primitive recursion schemes for the following
inductively defined set:

n e N l,re Tree

leaf n € Tree node [r € Tree

Sketch:

A
f(2yy ooy Ty ey T,) = T,

f(zyyeyz,) =g (hy (T, ey @)y ooey by, (2, 0y 2,))
I

A

Ty, eeey Ty, 2600) = g (Ty, ..., T,,)

ceey Ly

Ty, eeey Ty, SUC T) =

ho(xyy .oy @y f (T, eeny T, T), T)

» Abstract syntax (PRF,).
» Denotational semantics:

[_] € PRE,— (N"—N)
» Big-step operational semantics:

flol 4 n

» Strictly weaker than x/Turing machines.

» Some y-computable total functions
are not PRF-computable,
for instance the PRF semantics.

» PRF + minimisation.

» For fe N—N:
fis RF-computable <
fis x-computable <
fis Turing-computable.

e =2
| (&1)
| Az.e
| Cleg,..ye,)
| case eof {Ci(zy,...,2,) = €1;... }
| recz=c¢

» Untyped, strict.
»recz=¢ ~ let z=—¢in z.

vV v v VY

v

Abstract syntax.

Substitution of closed expressions.
Big-step operational semantics, not total.
The semantics as a partial function:

[_] € CExp— CExp

Representation of inductively defined sets.

Coding function:

"_"¢€ Exp— CExp
"z =Var("z")
e ey =Apply(t e, ey)
"Az.e'=Lambda("z " e")

Representing expressions

Coding function:

"_ '€ Ezp— CExp
“varz’ = const " Var ' (cons " z ' nil)
r A r A
apply e; e; = const Apply
(cons " ¢, ' (cons " ey, ' nil))
"lambda z ¢ ' = const " Lambda
(cons "z (cons " e nil))

Representing expressions

Coding function:

"_ '€ Ezp— CExp
“varz’ = const " Var ' (cons " z ' nil)
r A r A
apply e; e; = const Apply
(cons " ¢, ' (cons " ey, ' nil))
"lambda z ¢ ' = const " Lambda
(cons "z (cons " e nil))

Alternative “type":
"€ Exp A— CFEzp (Rep A)
Rep A: Representations of programs of type A.

Computability

» fe A— Bis xy-computable if
Jdee CEzp. YVac A.le"a']="fa"

» Use reasonable coding functions:

> Injective.
» Computable. But how is this defined?

» X-decidable: f€ A — Bool.

» X-semi-decidable:
If fa = false then [[e" a '] is undefined.

Some computable partial functions
» The semantics [_] € CExp — CEzp:
Vee CExp.[eval " e'] =" [e] .
» The coding function " _ "' € Ezp — CEzp:
Vee Exp.Jcode"e']=""e"".

» The “Terminates in n steps?” function
terminates-in € CErp x N — Bool:

Vpe ChErp x N,
[terminates-in" p'] =" terminates-in p .

Some non-computable functions

The halting problem with self-application,

halts-self € CExp — Bool
halts-self p =
if p" p ' terminates then true else false,

can be reduced to the halting problem,

halts € CExp — Bool
halts p = if p terminates then true else false.

Some non-computable functions

Proof sketch:
» Assume that halts implements halts.
» Define halts-self in the following way:

halts-self = X p. halts Apply(p, code p)
> halts-self implements halts-self,

V e e CExp.
[halts-self " e '] = " halts-self e,

because Apply(" e, code"e") " e e .

Some non-computable functions

The halting problem can be reduced to:
» Semantic equality:

equal € CExp x CExzp — Bool
equal (e, e5) =
if [e;] = [e,] then true else false

» Pointwise equality of elements in Fun =
{(f,e) | f€ N—= Bool, e € CExp,
e implements f}:

pointwise-equal € Fun x Fun — Bool

pointwise-equal ((f,-), (g9, -)) =
if V.n € N. fn= gnthen true else false

Quiz

What is wrong with the following reduction
of the halting problem to pointwise-equal?

halts = A p. not (pointwise-equal
Lambda(" n
Apply(" terminates-in ",
Const(" Pair ',
Cons(p, Cons(Var(" n"),Nil())))))
"M _.False() ")

Bonus question: How can the problem be fixed?

Some non-computable functions

The halting problem can be reduced to:
» An optimal optimiser:

optimise € CErp — CFExp

optimise e =
some optimally small expression with
the same semantics as e

» Is a computable real number equal to zero?

is-zero € Interval — Bool
is-zero x = if [z] = 0 then true else false

» Many other functions, see Rice's theorem.

» A tape with a head:

Head

|
Llofoj1|1]u|u]u

» A state.
» Rules.

Turing machines

» Abstract syntax.

» Small-step operational semantics.

» The semantics as a family of partial functions:
-] € Vitme TM. List 3, — ListT',,

» Several variants:

» Accepting states.
Possibility to stay put.

A tape without a left end.
Multiple tapes.

>
>
>
» Only two symbols (plus).

Turing-computability

» Representing inductively defined sets.
» Turing-computable partial functions.

v

Turing-decidable languages.
» Turing-recognisable languages.

Some computable partial functions

» The semantics (uncurried):

{(tm,xs) | tm € TM,xs € List¥, } —
ListT',

Self-interpreter /universal TM.

(The definition of computability can
be generalised so that it applies to
dependent partial functions.)

» The y semantics.

Some non-computable functions

» The Post correspondence problem
(seen as a function to Bool).

» Is a context-free grammar ambiguous?

» The Turing machine semantics is also
x-computable.

» Partial functions f € N— N are
Turing-computable iff they are x-computable.

Some connections to other courses

» Time complexity: Different complexity classes.
» Grammars: The Chomsky hierarchy.

https://plato.stanford.edu/archives/win2018/entries/computability/#SigCom
https://en.wikipedia.org/wiki/Chomsky_hierarchy

A recent conference: CiE 2019.

https://community.dur.ac.uk/cie.2019/

Current research in this area

Connections in dependent type theory:
» Termination checking.
» Equality checking.
» Theorem proving.
» How can possibly non-terminating

computations be represented in a
terminating programming language?

Finally

» We have studied the concept of “computation”.
» How can “computation” be formalised?

» To simplify our work: Idealised models.

» The Church-Turing thesis.
» We have explored the limits of computation:

» Programs that can run arbitrary programs.
» A number of non-computable functions.

Good
luck!

