
Lecture
Computability

(DIT312, DAT415)

Nils Anders Danielsson

2019-11-11



Today

Two models of computation:
▶ PRF.
▶ The recursive functions.



PRF



The primitive recursive functions

▶ A model of computation.
▶ Programs taking tuples of natural numbers to

natural numbers.
▶ Every program is terminating.



Sketch

The primitive recursive functions can be constructed
in the following ways:

f () = 0
f (x) = 1 + x
f (x1, …, x𝑘, …, x𝑛) = x𝑘
f (x1, …, x𝑛) = g (h1 (x1, …, x𝑛), …, h𝑘 (x1, …, x𝑛))
f (x1, …, x𝑛, 0) = g (x1, …, x𝑛)
f (x1, …, x𝑛, 1 + x) =

h (x1, …, x𝑛, x, f (x1, …, x𝑛, x))



Abstract
syntax



Vectors

Vectors, lists of a fixed length:

nil ∈ A0
xs ∈ An x ∈ A

xs, x ∈ A1+n

Read nil, x, y, z as ((nil, x), y), z.



Indexing

An indexing operation can be defined by (a slight
variant of) primitive recursion:

index ∈ An → {i ∈ ℕ ∣ 0 ≤ i < n} → A
index (xs, x) zero = x
index (xs, x) (suc n) = index xs n



Abstract syntax
PRFn: Functions that take n arguments (n ∈ ℕ).

zero ∈ PRF0 suc ∈ PRF1

i ∈ ℕ 0 ≤ i < n
proj i ∈ PRFn

f ∈ PRFm gs ∈ (PRFn)m

comp f gs ∈ PRFn

f ∈ PRFn g ∈ PRF2+n
rec f g ∈ PRF1+n



Denotational
semantics



Denotational semantics

⟦_⟧ ∈ PRFn → (ℕn → ℕ)
⟦ zero ⟧ nil = 0
⟦ suc ⟧ (nil, n) = 1 + n
⟦ proj i ⟧ 𝜌 = index 𝜌 i
⟦ comp f gs ⟧ 𝜌 = ⟦f ⟧ (⟦gs⟧⋆ 𝜌)
⟦ rec f g ⟧ (𝜌, zero) = ⟦f ⟧ 𝜌
⟦ rec f g ⟧ (𝜌, suc n) = ⟦g⟧ (𝜌, n, ⟦rec f g⟧ (𝜌, n))
⟦_⟧⋆ ∈ (PRFm)n → (ℕm → ℕn)
⟦ nil ⟧⋆ 𝜌 = nil
⟦ fs, f ⟧⋆ 𝜌 = ⟦fs⟧⋆ 𝜌, ⟦f ⟧ 𝜌



Denotational semantics

⟦_⟧ ∈ PRFn → (ℕn → ℕ)
⟦ zero ⟧ nil = 0
⟦ suc ⟧ (nil, n) = 1 + n
⟦ proj i ⟧ 𝜌 = index 𝜌 i
⟦ comp f gs ⟧ 𝜌 = ⟦f ⟧ (⟦gs⟧⋆ 𝜌)
⟦ rec f g ⟧ (𝜌, n) = rec (⟦f ⟧ 𝜌)

(𝜆n r. ⟦g⟧ (𝜌, n, r))
n

⟦_⟧⋆ ∈ (PRFm)n → (ℕm → ℕn)
⟦ nil ⟧⋆ 𝜌 = nil
⟦ fs, f ⟧⋆ 𝜌 = ⟦fs⟧⋆ 𝜌, ⟦f ⟧ 𝜌



Quiz

Which of the following terms, all in PRF2,
define addition?

1. rec (proj 0) (proj 0)
2. rec (proj 0) (proj 1)
3. rec (proj 0) (comp suc (nil, proj 0))
4. rec (proj 0) (comp suc (nil, proj 1))

Hint: Examine ⟦p⟧ (nil, m, n) for each program p.



Addition

Goal: Define add satisfying the following equations:

∀ m ∈ ℕ. ⟦add⟧ (nil, m, zero) = m
∀ m, n ∈ ℕ. ⟦add⟧ (nil, m, suc n) =

suc (⟦add⟧ (nil, m, n))

If we can find a definition of add that satisfies these
equations, then we can use structural induction to
prove that add is an implementation of addition.



Addition

Perhaps we can use rec:

∀ m ∈ ℕ. ⟦rec f g⟧ (nil, m, zero) = m
∀ m, n ∈ ℕ. ⟦rec f g⟧ (nil, m, suc n) =

suc (⟦rec f g⟧ (nil, m, n))



Addition

Perhaps we can use rec:

∀ m ∈ ℕ. ⟦f⟧ (nil, m) = m
∀ m, n ∈ ℕ. ⟦rec f g⟧ (nil, m, suc n) =

suc (⟦rec f g⟧ (nil, m, n))



Addition

Perhaps we can use rec:

∀ m ∈ ℕ. ⟦f⟧ (nil, m) = m
∀ m, n ∈ ℕ. ⟦g⟧ (nil, m, n, ⟦rec f g⟧ (nil, m, n)) =

suc (⟦rec f g⟧ (nil, m, n))



Addition

The zero case:

∀ m ∈ ℕ. ⟦f⟧ (nil, m) = m



Addition

The zero case:

∀ m ∈ ℕ. ⟦proj 0⟧ (nil, m) = m



Addition

The suc case:

∀ m, n ∈ ℕ. ⟦g⟧ (nil, m, n, ⟦rec f g⟧ (nil, m, n)) =
suc (⟦rec f g⟧ (nil, m, n))



Addition

The suc case:

∀ m, n, r ∈ ℕ. ⟦g⟧ (nil, m, n, r) = suc r



Addition

The suc case:

∀ m, n, r ∈ ℕ. ⟦comp h hs⟧ (nil, m, n, r) = suc r



Addition

The suc case:

∀ m, n, r ∈ ℕ. ⟦h⟧ (⟦hs⟧⋆ (nil, m, n, r)) = suc r



Addition

The suc case:

∀ m, n, r ∈ ℕ. ⟦suc⟧ (⟦nil, k⟧⋆ (nil, m, n, r)) = suc r



Addition

The suc case:

∀ m, n, r ∈ ℕ. ⟦suc⟧ (nil, ⟦k⟧ (nil, m, n, r)) = suc r



Addition

The suc case:

∀ m, n, r ∈ ℕ. suc (⟦k⟧ (nil, m, n, r)) = suc r



Addition

The suc case:

∀ m, n, r ∈ ℕ. ⟦k⟧ (nil, m, n, r) = r



Addition

The suc case:

∀ m, n, r ∈ ℕ. ⟦proj 0⟧ (nil, m, n, r) = r



Addition

We end up with the following definition:

rec (proj 0) (comp suc (nil, proj 0))



Big-step
operational
semantics



Big-step operational semantics
▶ The semantics can also be defined inductively.
▶ f [𝜌] ⇓ n means that the result of

evaluating f with input 𝜌 is n.
▶ f [𝜌] ⇓ n is well-formed (“type-correct”) if

∃ m ∈ ℕ. f ∈ PRFm ∧ 𝜌 ∈ ℕm ∧ n ∈ ℕ.

▶ fs [𝜌] ⇓⋆ 𝜌′ is well-formed if

∃ m, n ∈ ℕ.
f ∈ (PRFm)n ∧ 𝜌 ∈ ℕm ∧ 𝜌′ ∈ ℕn.

▶ Note that well-formed statements
do not need to be true.



Big-step operational semantics

zero [nil] ⇓ 0 suc [nil, n] ⇓ 1 + n

proj i [𝜌] ⇓ index 𝜌 i

f [𝜌] ⇓ n
rec f g [𝜌, zero] ⇓ n

rec f g [𝜌, m] ⇓ n
g [𝜌, m, n] ⇓ o

rec f g [𝜌, suc m] ⇓ o



Big-step operational semantics

gs [𝜌] ⇓⋆ 𝜌′ f [𝜌′] ⇓ n
comp f gs [𝜌] ⇓ n

nil [𝜌] ⇓⋆ nil
fs [𝜌] ⇓⋆ ns f [𝜌] ⇓ n

fs, f [𝜌] ⇓⋆ ns, n



Equivalence

f [𝜌] ⇓ n iff ⟦f ⟧ 𝜌 = n,
fs [𝜌] ⇓⋆ 𝜌′ iff ⟦fs⟧⋆ 𝜌 = 𝜌′.
This can be proved by induction on the structure of
the semantics in one direction, and f/fs in the other.



Equivalence

Thus the operational semantics is total and
deterministic:
▶ ∀f 𝜌. ∃ n. f [𝜌] ⇓ n.
▶ ∀f 𝜌 m n.

f [𝜌] ⇓ m and f [𝜌] ⇓ n implies m = n.



Quiz

Which of the following propositions are true?
1. comp zero nil [nil, 5, 7] ⇓ 0
2. comp suc (nil, proj 0) [nil, 5, 7] ⇓ 6
3. rec zero (proj 0) [nil, 2] ⇓ 0

(All three statements are well-formed.)



Computability
for PRF



No self-interpreter

▶ Not every (Turing-) computable function is
primitive recursive.

▶ Exercise: Define a computable function
code ∈ PRF1 → ℕ
with a computable left inverse.

▶ There is no program eval ∈ PRF1 satisfying

∀ f ∈ PRF1, n ∈ ℕ.
⟦eval⟧ (nil, ⌜ (f, n) ⌝) = ⟦f ⟧ (nil, n),

where ⌜ (f, n) ⌝ = 2code f 3n.



No self-interpreter
Proof sketch:
▶ Define g ∈ PRF1 by

comp suc (nil, comp eval (nil, f)),

where ⟦f ⟧ (nil, n) = 2n 3n.
▶ We get

⟦g⟧ (nil, code g) =
1 + ⟦eval⟧ (nil, ⟦f ⟧ (nil, code g)) =
1 + ⟦eval⟧ (nil, 2code g 3code g) =
1 + ⟦eval⟧ (nil, ⌜ (g, code g) ⌝) =
1 + ⟦g⟧ (nil, code g).



Knuth’s up-arrow
▶ Addition amounts to repeatedly taking the

successor:

𝑚 + 𝑛 =
𝑛

⏞⏞⏞⏞⏞⏞⏞suc (…(suc m)…)
▶ Multiplication is repeated addition:

𝑚𝑛 =
𝑛

⏞⏞⏞⏞⏞𝑚 + ⋯ + 𝑚
▶ Exponentiation is repeated multiplication:

𝑚𝑛 =
𝑛

⏞𝑚⋯𝑚



Knuth’s up-arrow

We can continue:

𝑚 ↑↑ 𝑛 =

𝑛
⏞
𝑚. .

.
𝑚

𝑚 ↑↑↑ 𝑛 =
𝑛

⏞⏞⏞⏞⏞⏞⏞⏞⏞𝑚 ↑↑ (⋯(𝑚 ↑↑ 𝑚)⋯)

𝑚 ↑↑↑↑ 𝑛 =
𝑛

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞𝑚 ↑↑↑ (⋯(𝑚 ↑↑↑ 𝑚)⋯)
⋮

All of these functions are primitive recursive.



Quiz

What is the value of 2 ↑↑↑ 3?

𝑚 ↑↑ 𝑛 =

𝑛
⏞
𝑚. .

.
𝑚

𝑚 ↑↑↑ 𝑛 =
𝑛

⏞⏞⏞⏞⏞⏞⏞⏞⏞𝑚 ↑↑ (⋯(𝑚 ↑↑ 𝑚)⋯)



Knuth’s up-arrow

A generalisation:

↑ ∈ ℕ → ℕ → ℕ → ℕ
𝑚 ↑zero 𝑘 = 𝑚𝑘
𝑚 ↑suc n zero = 1
𝑚 ↑suc n suc k = 𝑚 ↑𝑛 (𝑚 ↑suc n 𝑘)

This is a variant of Knuth’s up-arrow notation.



Knuth’s up-arrow

▶ Every individual function ↑𝑛 is primitive
recursive.

▶ However, ↑ is not, even though it is
computable.



The Ackermann function

▶ Another example of a computable function
that is not primitive recursive.

▶ One variant:

ack ∈ ℕ × ℕ → ℕ
ack (zero, n) = suc n
ack (suc m, zero) = ack (m, suc zero)
ack (suc m, suc n) = ack (m, ack (suc m, n))

▶ The function “grows faster” than every
primitive recursive function.



The
recursive
functions



The recursive functions

▶ A model of computation.
▶ Programs taking tuples of natural numbers to

natural numbers.
▶ Not every program is terminating.



Abstract syntax

▶ Extends PRF with one additional constructor.
▶ RFn: Functions that take n arguments.
▶ Minimisation:

f ∈ RF1+n
min f ∈ RFn

▶ Rough idea: min f [𝜌] is the smallest n for
which f [𝜌, n] is 0.

▶ Note that there may not be such a number.



Big-step operational semantics

The operational semantics is extended:

f [𝜌, n] ⇓ 0 ∀m < n. ∃ k ∈ ℕ. f [𝜌, m] ⇓ 1 + k
min f [𝜌] ⇓ n

The semantics is deterministic, but not total:
▶ f [𝜌] ⇓ m and f [𝜌] ⇓ n implies m = n.
▶ ∀m. ∃ f ∈ RFm. ∀ 𝜌. ∄ n. f [𝜌] ⇓ n.



Big-step operational semantics

The operational semantics is extended:

f [𝜌, n] ⇓ 0 ∀m < n. ∃ k ∈ ℕ. f [𝜌, m] ⇓ 1 + k
min f [𝜌] ⇓ n

The semantics is deterministic, but not total:
▶ f [𝜌] ⇓ m and f [𝜌] ⇓ n implies m = n.
▶ ∀m. ∃ f ∈ RFm. ∀ 𝜌. ∄ n. f [𝜌] ⇓ n.



Quiz

▶ Construct f ∈ RF0 in such a way that
∄n. f [nil] ⇓ n.



Denotational semantics?

We can try to extend the denotational semantics:

⟦ ⟧ ∈ RFn → (ℕn → ℕ)
⋮
⟦min f ⟧ 𝜌 = search f 𝜌 0

search ∈ RF1+n → ℕn → ℕ → ℕ
search f 𝜌 n =

if ⟦f ⟧ (𝜌, n) = 0
then n
else search f 𝜌 (1 + n)



Partial functions

▶ This “definition” does not give rise to (total)
functions.

▶ We can instead define a semantics as a
function to partial functions:

⟦ ⟧ ∈ RFn → (ℕn ⇀ ℕ)
⟦f ⟧ 𝜌 =

if f [𝜌] ⇓ n for some n
then n
else undefined



Expressiveness

▶ Equivalent to Turing machines, 𝜆-calculus, …



Summary

Two models of computation:
▶ PRF.
▶ The recursive functions.


	Introduction
	PRF
	Abstract syntax
	Denotational semantics
	Big-step operational semantics
	Computability for PRF
	The recursive functions
	Summary

