
Lecture
Computability

(DIT312, DAT415)

Nils Anders Danielsson

2019-11-06



Today

▶ Inductively defined sets.
▶ Functions defined by primitive recursion.
▶ Proofs by structural induction.



Natural
numbers



The natural numbers

The set of natural numbers, ℕ, is defined
inductively in the following way:
▶ zero ∈ ℕ.
▶ If n ∈ ℕ, then suc n ∈ ℕ.



The natural numbers

We can construct natural numbers by using these
rules a finite number of times. Examples:
▶ 0 = zero.
▶ 1 = suc zero.
▶ 2 = suc (suc zero).

The value zero and the function suc are called
constructors.



The natural numbers

An alternative way to present the rules:

zero ∈ ℕ
n ∈ ℕ

suc n ∈ ℕ



Propositions, predicates and relations

▶ A proposition is something that can (perhaps)
be proved or disproved.

▶ A predicate on a set A is a function from A to
propositions.

▶ A binary relation on two sets A and B is a
function from A and B to propositions.

▶ Relations can also have more arguments.



Equality

Two natural numbers are equal if they are built up
by the same constructors.
We can see this as an inductively defined relation:

zero = zero
m = n

suc m = suc n

(The names of the constructors have been omitted.)



Primitive recursion

We can define a function from ℕ to a set A in the
following way:
▶ A value z ∈ A, the function’s value for zero.
▶ A function s ∈ ℕ → A → A, that given n ∈ ℕ

and the function’s value for n gives the
function’s value for suc n.



Primitive recursion

A definition by primitive recursion can be given the
following schematic form:

f ∈ ℕ → A
f zero = z
f (suc n) = s n (f n)



Primitive recursion

We can capture this scheme with a higher-order
function:

rec ∈ A → (ℕ → A → A) → ℕ → A
rec z s zero = z
rec z s (suc n) = s n (rec z s n)



Example: Equality with zero

▶ Can we define is-zero ∈ ℕ → Bool
using primitive recursion?

▶ Let “A” be Bool.
▶ Scheme:

is-zero ∈ ℕ → Bool
is-zero zero = ?
is-zero (suc n) = ?



Example: Equality with zero

▶ Can we define is-zero ∈ ℕ → Bool
using primitive recursion?

▶ Let “A” be Bool.
▶ Scheme:

is-zero ∈ ℕ → Bool
is-zero zero = true
is-zero (suc n) = false



Example: Equality with zero

▶ Can we define is-zero ∈ ℕ → Bool
using primitive recursion?

▶ Let “A” be Bool.
▶ With the higher-order function:

is-zero ∈ ℕ → Bool
is-zero = rec true (𝜆n r. false)



Example: Addition

▶ Can we define add ∈ ℕ → ℕ → ℕ
using primitive recursion?

▶ Let “A” be ℕ → ℕ.
▶ Scheme:

add ∈ ℕ → (ℕ → ℕ)
add zero = ?
add (suc m) = ?



Example: Addition

▶ Can we define add ∈ ℕ → ℕ → ℕ
using primitive recursion?

▶ Let “A” be ℕ → ℕ.
▶ Scheme:

add ∈ ℕ → (ℕ → ℕ)
add zero = 𝜆n. n
add (suc m) = ?



Example: Addition

▶ Can we define add ∈ ℕ → ℕ → ℕ
using primitive recursion?

▶ Let “A” be ℕ → ℕ.
▶ Scheme:

add ∈ ℕ → (ℕ → ℕ)
add zero = 𝜆n. n
add (suc m) = 𝜆n. ?



Example: Addition

▶ Can we define add ∈ ℕ → ℕ → ℕ
using primitive recursion?

▶ Let “A” be ℕ → ℕ.
▶ Scheme:

add ∈ ℕ → (ℕ → ℕ)
add zero = 𝜆n. n
add (suc m) = 𝜆n. suc (add m n)



Quiz

add ∈ ℕ → (ℕ → ℕ)
add zero = 𝜆n. n
add (suc m) = 𝜆n. suc (add m n)

Which of the following terms define addition?
1. rec (𝜆n. n) (𝜆m r. 𝜆n. suc (r m n))
2. rec (𝜆n. n) (𝜆m r. 𝜆n. suc (r n))
3. rec (𝜆n. n) (𝜆m r. 𝜆n. suc (r m))



Addition again

Another way to define addition:
▶ Let us fix m ∈ ℕ.
▶ Now we can define “addition by m”.
▶ Let “A” be ℕ.
▶ Scheme:

add′
m ∈ ℕ → ℕ

add′
m zero = m

add′
m (suc n) = suc (add′

m n)



Addition again

Another way to define addition:
▶ Scheme:

add′ ∈ ℕ → ℕ → ℕ
add′ m zero = m
add′ m (suc n) = suc (add′ m n)

▶ Using rec:

add′ ∈ ℕ → ℕ → ℕ
add′ m = rec m (𝜆n r. suc r)



Quiz
Multiplication by m, defined recursively:

mul ∈ ℕ → ℕ → ℕ
mul m zero = zero
mul m (suc n) = add m (mul m n)

Complete the following definition of
multiplication. You can make use of addition
(add).
mul m = rec ? (𝜆n r. ?)



Structural induction
Let us assume that we have a predicate P on ℕ. If
we can prove the following two statements, then we
have proved ∀n ∈ ℕ.P n:
▶ P zero.
▶ ∀n ∈ ℕ.P n implies P (suc n).



Example: Addition
Theorem: ∀m ∈ ℕ. add m zero = m.
Proof:
▶ Let us use structural induction, with the

predicate P = 𝜆m. add m zero = m.
▶ There are two cases:

P zero ⇐ {By definition.}
add zero zero = zero ⇐ {By definition.}
zero = zero



Example: Addition
Theorem: ∀m ∈ ℕ. add m zero = m.
Proof:
▶ Let us use structural induction, with the

predicate P = 𝜆m. add m zero = m.
▶ There are two cases:

P (suc m) ⇐
add (suc m) zero = suc m ⇐
suc (add m zero) = suc m ⇐
add m zero = m ⇐
P m



More
inductively
defined sets



Cartesian products

The cartesian product of two sets A and B is
defined inductively in the following way:

x ∈ A y ∈ B
pair x y ∈ A × B

Notice that this definition is “non-recursive”.



Primitive recursion

Scheme for primitive recursion for pairs:

f ∈ A × B → C
f (pair x y) = p x y

The corresponding higher-order function:

uncurry ∈ (A → B → C) → A × B → C
uncurry p (pair x y) = p x y



Structural induction
Let us assume that we have a predicate P on
A × B. If we can prove the following statement,
then we have proved ∀p ∈ A × B.P p:
▶ ∀x ∈ A. ∀ y ∈ B.P (pair x y).



Monomorphic lists

The set of finite lists containing natural numbers is
defined inductively in the following way:

nil ∈ Nat-list
x ∈ ℕ xs ∈ Nat-list

cons x xs ∈ Nat-list



Primitive recursion
Scheme for primitive recursion for natural number
lists:

f ∈ Nat-list → A
f nil = n
f (cons x xs) = c x xs (f xs)

The corresponding higher-order function:
listrec ∈ A → (ℕ → Nat-list → A → A) →

Nat-list → A
listrec n c nil = n
listrec n c (cons x xs) = c x xs (listrec n c xs)

Note that the recursion does not descend into the
natural numbers.



Structural induction
Let us assume that we have a predicate P on
Nat-list. If we can prove the following statements,
then we have proved ∀xs ∈ Nat-list.P xs:
▶ P nil.
▶ ∀x ∈ ℕ. ∀ xs ∈ Nat-list.

P xs implies P (cons x xs).



Lists

The set of finite lists containing elements of the set
𝐴 is defined inductively in the following way:

nil ∈ List A
x ∈ A xs ∈ List A

cons x xs ∈ List A



Primitive recursion
Scheme for primitive recursion for lists:

f ∈ List A → B
f nil = n
f (cons x xs) = c x xs (f xs)

The corresponding higher-order function:

listrec ∈ B → (A → List A → B → B) →
List A → B

listrec n c nil = n
listrec n c (cons x xs) = c x xs (listrec n c xs)



Structural induction
Let us assume that we have a predicate P on
List A. If we can prove the following statements,
then we have proved ∀xs ∈ List A.P xs:
▶ P nil.
▶ ∀x ∈ A. ∀ xs ∈ List A.

P xs implies P (cons x xs).



Quiz

Use listrec and uncurry to define a function
from List (A × B) to List B that replaces
every pair in the list with its second
component.
listrec ? ?



Quiz

Use listrec and uncurry to define a function
from List (A × B) to List B that replaces
every pair in the list with its second
component.
listrec nil (𝜆p ps r. cons (uncurry (𝜆x y. ?) p)?)



Pattern

▶ Given an inductive definition of the kind
presented here, we can derive:
▶ The structural induction principle.
▶ The primitive recursion scheme.

▶ Pattern:
▶ One case per constructor.
▶ One argument per constructor argument,

plus an extra argument
(for induction: an inductive hypothesis)
per recursive constructor argument.



Pattern

Pattern (with recursive constructor arguments last):

drec ∈ One assumption per constructor → D → A
drec f1 … f𝑘 (c1 x1 … x𝑛1

) =
f1 x1 … x𝑛1

(drec f1 … f𝑘 x𝑖1) … (drec f1 … f𝑘 x𝑛1
)

⋮
drec f1 … f𝑘 (c𝑘 x1 … x𝑛𝑘

) =
f𝑘 x1 … x𝑛𝑘

(drec f1 … f𝑘 x𝑖𝑘) … (drec f1 … f𝑘 x𝑛𝑘
)



Quiz

Define the booleans inductively and write
down the structural induction principle. How
many cases does the principle have?
▶ 1
▶ 2
▶ 3
▶ 4

Bonus question: Can you think of an inductive
definition for which the answer would be 0?



Summary

▶ Inductively defined sets.
▶ Functions defined by primitive recursion.
▶ Proofs by structural induction.


	Introduction
	Natural numbers
	More inductively defined sets
	Summary

