Nils Anders Danielsson

2019-11-06



» Inductively defined sets.
» Functions defined by primitive recursion.
» Proofs by structural induction.



Natural
numbers



The set of natural numbers, N, is defined
inductively in the following way:

» zero € N.
» If n €N, then suc n € N.



The natural numbers

We can construct natural numbers by using these
rules a finite number of times. Examples:

» 0 = zero.
» 1 = suc zero.

> 2 = suc (suc zero).

The value zero and the function suc are called
constructors.



An alternative way to present the rules:

neN

zero € N sucn € N



Propositions, predicates and relations

v

A proposition is something that can (perhaps)
be proved or disproved.

» A predicate on a set A is a function from A to
propositions.

v

A binary relation on two sets A and B is a
function from A and B to propositions.

v

Relations can also have more arguments.



Equality

Two natural numbers are equal if they are built up
by the same constructors.

We can see this as an inductively defined relation:

m=n

ZEro = Ze€ero Ssuc m =sucn

(The names of the constructors have been omitted.)



Primitive recursion

We can define a function from N to a set A in the
following way:
» A value z € A, the function's value for zero.
» A function s € N— A — A, that given n € N
and the function’s value for n gives the
function's value for suc n.



A definition by primitive recursion can be given the
following schematic form:

feN—A
fzero =1z

f(sucn)=sn(fn)



We can capture this scheme with a higher-order
function:

rece A-(N—-A4A—-A4)->N—-A4
rec z szero =z
rec z s (sucn) = sn(reczsn)



Example: Equality with zero

» Can we define is-zero € N — Bool
using primitive recursion?

» Let “A"” be Bool.
» Scheme:

1s-zero € N — Bool
18-2€ro zero =7
is-zero (suc n) =7



Example: Equality with zero

» Can we define is-zero € N — Bool
using primitive recursion?

» Let “A"” be Bool.
» Scheme:

1s-zero € N — Bool
18-2€ero0 Zero = true
is-zero (suc n) = false



Example: Equality with zero

» Can we define is-zero € N — Bool
using primitive recursion?

» Let “A" be Bool.
» With the higher-order function:

is-zero € N — Bool
is-zero = rec true (An 7. false)



» Can we define add € N— N — N
using primitive recursion?

» Let “A" be N — N.
» Scheme:

add € N— (N—N)
add zero =7
add (suc m) =7



» Can we define add € N— N — N
using primitive recursion?

» Let “A" be N — N.
» Scheme:

add € N— (N—N)
addzero = An.n
add (suc m) =7



» Can we define add € N— N — N
using primitive recursion?

» Let “A" be N — N.
» Scheme:

add € N— (N—N)
addzero = An.n
add (suc m) = An. ?



Example: Addition

» Can we define add € N— N — N
using primitive recursion?

» Let “A” be N — N.
» Scheme:

add € N— (N—N)
addzero = An.n
add (suc m) = An.suc (add m n)



add € N— (N—N)
addzero = An.n
add (suc m) = An.suc (add m n)

1. rec (An.n) (Am r. An.suc (r mn))
2. rec (An.n) (Am . An.suc (rn))
3. rec (An.n) (Am . An.suc (rm))



Addition again

Another way to define addition:
» Let us fix m € N.
» Now we can define “addition by m".
» Let “A" be N.

» Scheme:

add,, € N—N
add, zero =m
add,, (suc n) = suc (add,, n)



Addition again

Another way to define addition:
» Scheme:

add € N—N— N
add mzero =m
add m (suc n) = suc (add m n)

» Using rec:

add € N—N—N
add m =recm (Anr.sucr)



Multiplication by m, defined recursively:

mul € N—N — N
mul m zero = zero
mul m (suc n) = add m (mul m n)

mul m=rec? (Anr.7?)



Structural induction

Let us assume that we have a predicate P on N. If
we can prove the following two statements, then we
have proved Vn € N. P n:

> P zero.
» Vn € N. P nimplies P (suc n).



Example: Addition

Theorem: Vm € N. add m zero = m.

Proof:

» Let us use structural induction, with the
predicate P = Am. add m zero = m.

» There are two cases:

P zero < {By definition. }
add zero zero = zero < { By definition. }
zero = zero



Example: Addition

Theorem: Vm € N. add m zero = m.

Proof:
» Let us use structural induction, with the
predicate P = Am. add m zero = m.
» There are two cases:

P (suc m)

add (suc m) zero = suc m
suc (add m zero) = suc m
add m zero = m

Pm

L1 L [



More
inductively
defined sets



Cartesian products

The cartesian product of two sets A and B is
defined inductively in the following way:

re A ye B
parzye Ax B

Notice that this definition is “non-recursive”.



Primitive recursion

Scheme for primitive recursion for pairs:

feAxB—C
flpairzy)=pay

The corresponding higher-order function:

uncurry € (A—-B— C) - Ax B—C
uncurry p (pairxy) =pxy



Structural induction

Let us assume that we have a predicate P on
A x B. If we can prove the following statement,
then we have proved Vp € A x B. P p:

» Vre A. YV ye B P(pair zy).



Monomorphic lists

The set of finite lists containing natural numbers is
defined inductively in the following way:

z €N s € Nat-list
nil € Nat-list cons x xs € Nat-list




Primitive recursion

Scheme for primitive recursion for natural number

lists:
f € Nat-list — A
fnil =n

f(cons x xs) = ¢ x xs (f zs)
The corresponding higher-order function:

listrec € A — (N — Nat-list > A — A) —
Nat-list — A

listrec n c nil =n

listrec n ¢ (cons x xs) = ¢ x xs (listrec n ¢ s)

Note that the recursion does not descend into the
natural numbers.



Structural induction

Let us assume that we have a predicate P on
Nat-list. If we can prove the following statements,
then we have proved Vs € Nat-list. P zs:
» Pnil.
» Vr € N. V xs € Nat-list.
P zs implies P (cons z zs).



The set of finite lists containing elements of the set
A is defined inductively in the following way:

r€e A xs € List A
nil € List A cons zxzs € List A




Primitive recursion

Scheme for primitive recursion for lists:

fe List A— B
fnil =n
f(cons z xs) = ¢ x xs (f zs)

The corresponding higher-order function:

listrec e B— (A — List A— B— B) —
List A— B

listrec n c nil =n

listrec n ¢ (cons x zs) = ¢ = xs (listrec n ¢ xs)



Structural induction

Let us assume that we have a predicate P on
List A. If we can prove the following statements,
then we have proved Vs € List A. P zs:
> P nil.
» Ve e A. YV as € List A.
P zs implies P (cons x zs).



listrec ? 7



listrec nil (Ap ps r.cons (uncurry (Azy.?7) p)?)



Pattern

» Given an inductive definition of the kind
presented here, we can derive:
» The structural induction principle.
» The primitive recursion scheme.

» Pattern:

> One case per constructor.

» One argument per constructor argument,
plus an extra argument
(for induction: an inductive hypothesis)
per recursive constructor argument.



Pattern

Pattern (with recursive constructor arguments last):

drec € One assumption per constructor — D — A
drec fy ... f, (cy @y oo @, ) =
fiayom, (drecfy o fiox; ) o (drec fi o fi @)

drecfl o fo (Cp Ty w1y ) =
fe @1 ooz, (drec fy oo fyo ;) o (drec fy o i, 3, )



Quiz

Define the booleans inductively and write
down the structural induction principle. How
many cases does the principle have?

1

vV v v Vv

2
3
4

Bonus question: Can you think of an inductive
definition for which the answer would be 07



» Inductively defined sets.
» Functions defined by primitive recursion.
» Proofs by structural induction.



	Introduction
	Natural numbers
	More inductively defined sets
	Summary

