
Object-oriented Programming Project
Implementation

Dr. Alex Gerdes
TDA367/DIT212 - HT 2018

• Seminar

• Domain model -> design model -> implementation

• Test-driven development

• Sequence diagram

• Thinking high and low

• Monopoly: unit tests and Travis

Summary previous lecture

• The design is really important!
- We design the model
- We design the full application

Technical debt

Design and Technical Debt

Technical debt is "a concept in programming that reflects the extra development
work that arises when code that is easy to implement in the short run is used
instead of applying the best overall solution".

So from here the design is a matter of great concern to us!
- We design the model
- We design the full application

• You should be (nearly) finished with the first iteration:
- First version of RAD

‣ Description of application
‣ User stories
‣ Domain model

- Design model (will end up in SDD)
- Implementation: able to run application and tests!

• Next iteration:
- Refactor before you begin!
- Revise User Stories (content, estimation, priority)
- Choose new set of User Stories
- Update models
- etc.

Next iteration (sprint)

Iteration Planning

Iterations Last Iteration

 w1 w3 Demo

First runnable
version Add functionality

Iteration 1

w8

Iterations and weeks
- Must have something to run late week 3 (probably some tests, more later …)!

Refactoring

• Make objects “of the same type”
- Guarantee certain operations are available
- Possible to store heterogenous objects in Collections

• Isolate the model
- Shield different parts of application

• Try to abstract, but don’t overdo! Abstract away from:
- file formats
- Storage systems

Interfaces and abstraction Interfaces

// Possibly to treat Spaces from some specific point
public class Space implements IBuyable {

...
}

// Probably not useful (don’t need to shield model classes
// from each other)
public class Space implements ISpace {

...
}

My convention
using leading ”I”
for interfaces

Use of interfaces
- Make objects “the same type”.

- Guarantee some general operations is present
- Possible to store heterogenous objects in Collections
- This use is possible in Model

- The “seams” in the system, shielding different parts of application.
- Not in model (model is a single part)

Implementation principlesImplementation Principles

Smells

There are quite a few design principles and best practices
- Can’t remember them all, … but during code reviews, check the list

Check this during code
review / reflection

• Refactor after each iteration
- Check against implementation principles
- Keep functionality the shame
- Run tests! (regression testing)

Refactoring

Refactoring

Should refactor aggressively after each iteration!
- Check against implementation principles
- Refactoring patterns

• Domain model contains the core classes from the analysis

• Design model is the domain model adapted for implementation
- Extended with “technical”-support classes

• Control is a layer coordinating the flow between the model and services

• Services are everything supporting the model
- GUI
- Handling of resources
- Persistence (save to file, database)
- Communication (network, …)

• Resources
- Data for configuration, initialization, ...
- Images, sounds, ...
- Internationalisation data

Application design

Application Design

Resources
Services

Control

Design Model

Domain
Model

This is an abstract view how an OO-application (system) “should” look (not
universally true, but ok for this course)

- Domain model is the core classes from the analysis
- Design model is the domain model adapted for implementation

- Extended with “technical”-support classes
- For MP: IOwnable, IBuildable (so far)

- Control is a layer coordinating the flow between the model and services
- So far handled by JUnit tests

- Services are everything supporting the model (no services so far)
- GUI
- Handling of resources
- Persistence (save to file, database)
- Communication (network, …)

- Resources
- Data for configuration, initialization, ...
- Images, sounds, …
- i18n data

Application design

src: https://www.slideshare.net/srinip/domain-driven-design-development-spring-portfolio

Package structurePackage Structure

edu.chl.hajo.monopoly

ctrl

viewservice

util

event

core

Main

Application should be partitioned into packages.
- Will organize the overall structure of application.

- Each package should have a well defined purpose (same as classes,
methods)

- NOTE: Arrows shows dependencies
- util and config used by many but uses NONE (only incoming arrows)

- Arrows for util and config not shown, would clutter up
- NOTE: Model not dependent on services (used via ctrl more later ...)
- Package structure should guarantee unique qualified class names
- Use UML package diagram

Packages
- edu.chl.hajo.monopoly: (nested) package(s) for full application. Using approx.

reversed internet domain
- Only class (for now) Main. Application start class (main method)

- util: non-application specific classes (possibly reusable)
- service: classes for file handling, etc.
- ctrl: control classes
- event: event handling inside application (not Swing events) more to come
- view: GUI classes
- core: the model

• Application should be partitioned into packages
- Organises the overall structure of application
- Each package should have a well defined purpose (same as classes,

methods)

• Arrows show dependencies
- util and config used by many but uses NONE (only incoming

arrows)
- Arrows for util and config not shown, would clutter up

• Model not dependent on services (used via ctrl)

• Package structure should guarantee unique qualified class names

• Use UML package diagram

Package structure

Circular dependenciesCircular Dependencies

a

b

c
!

Circular dependencies between packages
- Same problems as mutual dependencies between classes
- Must avoid, see tools … (upcoming)

• Use tools to increase design and code quality!
- Some built in to IDE’s
- See web!
- Possible to incorporate into pom.xml (Maven project)

Analysis tools
Quality Tools

Use tools to increase design and code quality!
- Some built in to IDE’s
- See web!
- Possible to incorporate into pom.xml (Maven project)

• Every class has well defined responsibility (represents one concept)?

• Redundancy? Split or collapse classes? Introduce generalisation?

• Missing or unnecessary classes (convert to attribute)?

• Directions of associations

• No cyclic traversal of associations or dependencies (no mutual)

• Model in one package (possibly organisational subpackages)?

• Interface(s) to model (model package) to use by others?

• Building the model (factories)?

• Aggregates and call chains?

• Parameterization of model (user options)?

• Absent values (avoiding null)

• Are unit tests in place for the entire model?

• Is everything located in one single place?

Design review

MVC implementation

MVC design review

• Different opinions about MVC structure

• This is a push design (vs. pull design) when using an
Observer pattern

MVC Design Review

View

Model Control

Possibly mutual
dependencies (!)

Control access
model. Model
never access
control

Indirectly
GUI update
Model never
access view

View possibly
access model,
model never
access view
(directly)

Observer Pattern

There are many opinions about MVC.
- When using Observer this is a push design (vs. pull design)

Observer design choices

• An alternative implementation of the observer pattern is an event bus
- The bus is interface to model (along with types of messages)
- Observables publish events
- Observers register as event handlers
- All events pass through the bus, easy to inspect/log events

Observer Design Choices

Observable

Observer

Observable

Observable

Observer

Observer

Observer

Observable

Observable

Observable

Observer

Observer

Observer

Observer

BUS

Ad hoc Observer Observer using Event bus

Prefer!

Implementation of observer better use an event based design with an event bus
- Bus globally accessible (Singleton)
- Observables publishes events
- Observers register as event handlers
- All event pass through the bus, possible to inspect/log events!

MP: Will use a simple, in house, event bus

• EventBus is a singleton class with methods register/unregister/publish

• IEventhandler is interface with method onEvent

Implementing EventBusImplementing Eventbus

public class DicePanel implements IEventHandler … {

// Somewhere ...
// EventBus.BUS.register(dicePanel);

@Override
public void onEvent(Event evt) {

 if (evt.getTag() == Event.Tag.DICE_FST) {
 int i = (int) evt.getValue();
 diceOne.setText(String.valueOf(i));
 } else if (evt.getTag() == Event.Tag.DICE_SEC) {
 int i = (int) evt.getValue();
 diceTwo.setText(String.valueOf(i));
 }
}

EventBus is a singleton class with methods register/unregister/publish.
IEventhandler is interface with method onEvent

• We don’t want to clutter model
classes with event publishing

- Do event publishing in
setters (possibly private).
Class must use setters, not
direct assignments!

• Alternatives:

- Wrap a class in an
’Observable’ class and
forward calls

- Extend a class and add
publishing in sub-class

Keep model clean

Keep Model Clean
public class Dices {

private int first;
private int second;
...
private void setFirst(int first) {

this.first = first;
EventBus.BUS.

publish(new Event(Event.Tag.DICE_FST, first));
}

private void setSecond(int second) {
this.second = second;
EventBus.BUS.

publish(new Event(Event.Tag.DICE_SEC, second));
}

}

Don’t want to clutter model classes with event publishing all over
- Event publishing ONLY in setters (possibly private)

- Class must use setters, no bare assignments!
- Should make it easy to locate observables behaviour

Or…
- Wrap model class in Observable (forward calls to real model class)
- Extend Model class, add publishing in sub class

Existing EventBus

Existing Event Bus
import com.google.common.eventbus.*;
// Google Guava Eventbus
public static final EventBus BUS = new EventBus();

// Outgoing from model to GUI
@Subscribe
public void onEvent(MessageChangeEvt evt) {
 msg.setText(evt.getMsg());
}

public class Model {
 public void setMsg(String msg) {
 this.msg = msg;
 // State change inform view
 BUS.post(new MessageChangeEvt(msg));
 }
}

Google guava eventbus

MVC vs MVP vs MVVM
MVC vs MVP vs MVVM

This seems to be an issue for Android developers.
- Can’t see very principally different ideas, ….
- ….will possibly be beneficial for technical reasons?

- If so use!

MVC vs MVP vs MVVM

MVC vs. MVP vs.
MVVM on Android

src: https://academy.realm.io/posts/eric-maxwell-mvc-mvp-and-mvvm-on-android/

Choosing GUI technology
Choosing GUI Technology

Many choices …
- .. search web!
- MP: Will use Swing (Java2D)
- Maven or Gradle should handle dependencies.

• Probably no ’full’ MVC design when using a graphics framework
- No problem, but the model should be isolated!
- Mostly using a pull design (render ask model for data)
- Control replaced by update game (method periodically called by framework)

Using a graphics framework
Using a Graphics Framework

Model

data = getData()set(data)

If using a graphics framework normally no full MVC design
- Mostly using a pull design (render ask model for data)

- Vs. Observer, a push design!
- Control replaced by update game (method periodically called by framework)

• No rendering data in model

• No imports of framework classes in model!

• If the rendering is handled by framework:
- Wrap model data in framework classes
- Keep model clean

Render modelRender Model

Model
data = getData()

w = wrap(data)

render(w)

w type supplied
by framework

Framework

NO rendering data in model!
- I.e. no import of framework classes in model

If rendering (physics) handled by framework
- Wrap model data in framework classes
- Keep model clean!!!

• NO visual attributes (icons, sprites, names of files) in
model!
- Let framework, given the data, find the look!

Visual appearanceVisual Appearance

Model

Map<Data, Look> map ...

data = getData()
look = map.get(data)

render(look)

Framework

NO visual attributes (icons, sprites, names of files) in model!
- Let framework, given the data, find the look!

Services

Implementing a ServiceImplementing a Service

<<Static Factory>>
ServiceFactory

+ getService(): IService

<<Interface>>
IService

<<Hidden>>
ServiceImpl

HelperClass

MyService

Application
dependency
(this is what
rest of
application
can see)

IService s = ServiceFactory.getService();
… s.doService(…);

Services implemented using Facade pattern
- I.e. an interface used by control and a Factory to get an implementing object
- All other classes are package private (i.e. no public)

- Possibly pure data classes implemented as immutable value
objects

- For application (control layer) to find a service possibly use the Service
locator design pattern

- If problems with dependencies use layering inside service
- Use of generics may remove dependencies

ALSO: Often need to decide on format for data
- Try to shield application from changes in data formats!

Implementing a Service

• Services are implemented using a Facade pattern
- An interface used by control layer and a Factory to

instantiate a service
- All other classes are package private (i.e. no public)
- Implement pure data classes as immutable value objects

whenever possible
- Use of generics may remove dependencies

• Often need to decide on data format
- Try to shield application from changes in data formats!

Example Services
Example Services

INetwork

send(…)
receive(…)

IPerisistence

read(…)
write(…)

Application Calls

Application Calls

Flat text file

XML

Database

Hard coded

?

XML-RPC

Kryonet

Emulate
?

RMI

Serialization

Any service is accessed via an interface (INetwork or IPersistence)!
- Exact implementation technique never exposed to application

- Also hide data formats
- Exact implementation technique, is a technical detail, not overly interesting

for us
- Interfaces is a crucial part of application design!

• Again: don’t clutter the model!
- No service code in model
- Use a controller:

‣ Get data from model and shuffle to service or
‣ Get data from service set in model

Usage of a ServiceUsage of a Service

Model

Service

Control

Model

Service

Again: We don’t want to clutter the model!
- No service code in model
- Use a controller

- Get data from model and shuffle to service or ...
- Get data from service set in model

• Exceptions may come from Model or Services
- Model or Services called from control

‣ Model never calls service directly
- Handle exceptions in control
- Propagate message to view to inform user

Exception handling
Exception Handling

Model

Service1

Service2

try {

}catch(){

}

View

Control

Exceptionhandling not well understood subject
- This is an advice

Exceptions may come from Model or Services
- Model or Services called from control …

- Model never call service directly (except eventbus)
- Handle exceptions in control …
- … propagate message to view to inform user

Possibly create high level exception classes if many layers in application
- Also exception tunneling (Java specific)

• OO-models and relational databases don’t match
- OO model is a web of objects
- Database is primitive data in tables
- Object relational impedance mismatch
- Possibly : Use some ORM framework (Hibernate)

• Avoid using databases, emulate (use an interface)!

A note on databases
A Note On Databases

1 “pelle” 34

2 “fia” 56

3

1 “götaplat
sen

8000

2 “avenyn” 7000

3

OO modell Relational database

Mismatch!

OO-models and relational databases hard (unsolved) problem
- OO model is a web of objects
- Database is primitive data in tables
- Object relational impedance mismatch
- Possibly : Use some ORM framework

Avoid using databases, emulate (use an interface)!

System Design Document (SDD)

• The system design document’s (SDD) goal is to make the implementation of
the application understandable

• The SDD document completely describes the system:
- at the architecture [high] level,
- including subsystems and their services,
- hardware mapping,
- data management,
- access control,
- global software control structure.

• Audience: software architects and programmers

• The SDD is a "live" document that should be expanded and refined during/
after iterations

• The SDD is about communication, no strict rules on how to write it

SDD

• We prefer a top down explanation:
- Start out with the high level (big picture):

‣ Hardware setup, communication, applications involved (if
applicable)

- then refine in each step:
‣ Structure of (each) application
‣ Packages
‣ Design model
‣ Possibly classes/interfaces

- until close to code:
‣ when reaching this level: the code and the tests are the

documentation

SDD

• We have discussed many implementation issues:
- Refine and refactor both design and implementation
- MVC issues
- Services
- System Design Document

• Next: continue until finished 😀

Summary

