
Object-oriented Programming Project
Design and implementation

Dr. Alex Gerdes
TDA367/DIT212 - HT 2018

• Define the Idea so clear as possible

• Sketch the GUI

• Define Epics -> User Stories -> Tasks

• Prioritise -> Estimate -> Select -> Sprint (iteration)

• Start prototyping (in parallel)

• Domain model
- Based on User Stories
- Common language
- Input for Design model

• Requirements Analysis Document

Summary previous lecture

• Quiz-based:
- Try to guess the application based on domain model

• Purpose:
- Get feedback on domain model
- Give feedback

• Process:
- Show domain model UML diagram (prepare a slide)
- Leave out any class names that may give away application
- Give some hints in case of no feedback
- Show project idea / application
- (3 min. quiz, 3 min. app, 3 min. feedback)

Seminar

Design and implementation

• The next phase(s) of our process:
- Create a implementable/runnable version of our domain

model: the design model
- Possibly some primitive GUI, some simplified MVC

Design and implementation

Design & Implementation

Requirement
artifacts
(from RE)

Design Model

Domain Model

RAD

The last phase(s) of our process
- Now we’ll create a runnable version of our domain model, the design model
- Possibly some primitive GUI, some simplified MVC (more on MVC later)

Note: In slide there are different domains for the models, this should not be the
case.
Here I just try to show that the design model is more detailed.

(Note: In the figure there are different domains for the models, this should not be the case)

• The design model is the domain model extend with technical classes and
details
- Enables us to implement the application
- NOTE: Design model not per se understandable for all stakeholders
- Must be correspond to domain model

Design model

Design Model
Not in problem domain!

Added
technical
details

The design model is the domain model enhanced with technical classes/details,
constructors, etc

- To make domain model runnable!

NOTE: Design model must not be understandable for all stakeholders (customer).
- Must be traceable form domain model.

Monopoly: design model
MP : Design Model

OK to auto generate domain model (only)!

• The Pong game has a Ball and
two Paddles
- Which will check for collision:

‣ Ball or Paddle?

• Answer: probably none of!
- There are levels in the model
- Some objects are at a higher

level, handling objects at lower
level

- Paddle and Ball are at the “same”
level, so something higher up
should handle collisions

Levels in model

Levels in Model

The Pong game has a Ball and Two paddles
- Which will check for collision?
- .. or will (should) someone else check …?

Answer: Probably none of!
- There are levels in the model …
- … some objects are at a higher level, handling objects at lower level!
- Paddle and Ball are at the “same” level, so something higher up should

handle collisions

How about MP? Anything similar?

• An aggregate is a cluster of classes treated as a single unit
- All calls to the aggregate go through the root of the aggregate
- This prevents unnecessary dependencies and allows for proper call chains
- Will help to keep objects in a valid state

• If there are too many methods in root, add method to return sub-aggregate with a
new root

• Monopoly: we treat the complete model as an aggregate
- All calls will go through Monopoly object

• Not an universally valid decision, there may be other ways to group (in other
applications)

Aggregates

Aggregates and Call chains

Player

Dices

Monopoly

Board

Space

Piece

root

calls

call
chains

Aggregate

An aggregate is a cluster of classes (objects) treated as a unit
- All calls to the aggregate goes throught the aggregate root
- This will establish disciplined call chains in model

- Will help to keep objects in a valid state

If too many methods in root, add method to return sub-aggregate with new root.

MP: We’ll treat the complete model as an aggregate
- All calls will go through Monopoly object
- Not an universally valid decision, there may be other ways to group (in other

applications).

MVC recap
Returnvalues

Focus
for now

Any application with a GUI will (should) use some sort of MVC architecture (pattern)
- Have to keep in mind.

- Should methods have return values or should it be handled by
observer?

- Until now we have only worked with the model ...
- … except the view (GUI) sketches

- NOTE: Methods with return values much easier to test!

• Any application with a GUI should use some sort of MVC architecture
- Should methods have return values or should it be handled by an observer?
- Until now we have only worked with the model except the view (GUI) sketches
- NOTE: Methods with return values easier to test

• No user interaction in user story
- Complete user story may run within single method call to model
- Any GUI updates probably done using observer pattern, so possibly no need

for return values

• User interaction in user story
- More calls to model
- Later handled by control parts of MVC
- More likely with return values
- Controllers inspect return values and act accordingly

Return values

Returnvalues

Focus
for now

Any application with a GUI will (should) use some sort of MVC architecture (pattern)
- Have to keep in mind.

- Should methods have return values or should it be handled by
observer?

- Until now we have only worked with the model ...
- … except the view (GUI) sketches

- NOTE: Methods with return values much easier to test!

UML sequence diagramUML Sequence Diagram

Possible to
dry run UCs

A sequence diagram is used to describe a (the) dynamic behaviour of interacting
objects

Dry run is last step before start implementing.
- Will must decide (reevaluate) directions of associations (if not done before)
- Will reveal which methods in which classes!

For some use case(s) and the domain model
- Create an UML sequence diagram

If diagram gets very awkward/complex/messy possibly have to modify domain
model

- Missing/bad association may be added/changed now
- Missing classes may show up

If diagram to big, decide on which abstraction level, factor out lower levels to
separate diagrams.

Possibility to
dry-run

• A sequence diagram is used to describe the dynamic behaviour of
interacting objects

• A dry-run is usually the last step before implementation
- Decides directions of associations (possibility to reevaluate)
- Reveals in which class a method should be placed

• Create an UML sequence diagram for some aspects of the design model

• If diagram gets very awkward/complex/messy possibly have to modify
domain/design model
- Missing/bad association may be added/changed
- Missing classes may show up

• If diagram to big, decide on which abstraction level, factor out lower
levels to separate diagrams

UML sequence diagram

Monopoly: roll dices User Story

As as: player
I want to: roll the dices
so that: I can make a move

Acceptance:
- Player can start the roll of the dices
- All players can see the result
- After rolling the player can make a move
- The player can only roll the dices once
- …

• Show the board

• Show the players on the board

• Highlight the active player

• Allow the active player to roll the
dices

• Show the resulting dice values

• Make the dices values available
to other actions (next move tex)

• Change active player

Monopoly: roll dices User StoryMP : Dry Run UC Move

actual: Player dices : Dices: Monopoly board : Board

move()

getPosition()

oldPos

roll()

getSpace(oldPos, total)

getTotal()

total

newPos

setPosition(newPos)
No
return
value

From this dry run it should be possible to implement use case roll dices (just a
simple translation from diagram to code)!

- … but in practice, … often most modify things …
- Just some few considerations before coding … (upcoming)

• From this dry-run it should be possible to implement the
user story ’roll dices’
- But in practice things may turn up -> often necessary to modify

Data representation

Spaces[] board = …

Spaces[][] board = …

List<Space> board = …

Map<String, Space> board = …

Implementing classesImplementing Important Object
Characteristics

Any class used in any Collection should implement equals() and hashCode()
- MP: Spaces, Players … (equals on name, name unique)

Implement!
Implementation

public class Board {

private final List<Card> cards =

new ArrayList<>();

private final int size;

public Board(String[] names){

this.size = (int) sqrt(names.length);

int k = 0;

for (int row = 0; row < size; row++) {
 for (int col = 0; col < size; col++) {
 cards.add(new Card(names[k], row, col));
 k++;
 }
 }
}

Have all information we need!
- Write the code and run …. ehhhh, run how… (upcoming)?

Implementation
public class Board {

private final List<Card> cards =

new ArrayList<>();

private final int size;

public Board(String[] names){

this.size = (int) sqrt(names.length);

int k = 0;

for (int row = 0; row < size; row++) {
 for (int col = 0; col < size; col++) {
 cards.add(new Card(names[k], row, col));
 k++;
 }
 }
}

Have all information we need!
- Write the code and run …. ehhhh, run how… (upcoming)?

Have all information we need! 
Write the code and run… ehhhh, run

how?

Test driven development
Testdriven Development

Test driven development is a way to work with code inside the process
- During the implementation phase we try to use TDD

• By creating tests!

• Why is this a good idea?
- We’ll only produce the code we need!
- The code will have higher quality, because you will not implement “large”

untestable methods
- Will always have something to run!
- Keeping work focused on the logic of the model

‣ Great way to clarify the model logic, we must solve the problems
‣ Possibilities to discover model errors

- Debugging tests are much easier (vs full application)
- Being able to run a test suite against the model at any time is extremely

useful
‣ In particular after refactoring

• Keep test code separated form the application (as much as possible)

How to run?

Tests as documentation

@Test
public void testMoveAndPassGo() {
 Player player = m.getActivePlayer();
 int startBalance = player.getBalance();
 player.setPosition(getSpace(30));
 m.setDices(new MockDices(12)); // make sure we pass start
 m.move();
 assertEquals(player.getBalance(),
 startBalance + Monopoly.BONUS);
}

• TODO list:
- Implement classes: Monopoly, Player, Dices, Board, Space, Piece

‣ Create JUnit tests, especially for more complex classes
- Dices uses random, which is difficult to test, need fixed result -> mock!
- Decide where and how to build model

‣ Constructors?
- Implement method move() in Monopoly
- Create test calling move()

• The development environment
- Will use a Maven project
- Will run it using JUnit
- Version Handling using Git
- Continuous Integration with Travis

Monopoly: implement Roll User Story

Monopoly: first version

MP : Monopoly-0.1
Dɛʕʞ ˔ɸʕɛ

• We have done an iteration(ish):
- Requirements
- Analysis
- Design
- Implementation of a (part of) high priority user story

‣ As JUnit tests
‣ Also test for complex classes (unit test)

- Now reflect and refactor!

MP : Iteration 1

Here we have done a full cycle, i.e. iteration 1
- Requirements
- Analysis
- Design (not much, just the model)
- Implementation of some high priority use case(s) ...

- … as JUnit tests (integration test)
- Also test for complex classes (unit test)

Monopoly: first iteration

Using frameworks/libraries
Using Frameworks

Framework

Model

If using any framework possibly parts of model is handled by framework
- Example:

- 2D Position (no x and y in model classes)
- Collision detection
- Movement/Physics/Rendering in 3D game frameworks

- Exclude from model parts handled by framework
- If so: Can’t (don’t need to) test those parts

- Test what’s not handled by framework
- Possible have to mock (a lot)

NOTE: There should always be a model, using a framework doesn’t mean you may
skip the model

NOTE: Model may not be dependent on framework, more later at application
design!

- Should be possible to switch framework

• There should always be a model!
• Look for quality
• Be as independent as possible

• During implementation we must be able to switch between
high and low level abstractions
- If stuck at high level (user stories, GUI ...), concretise by implement

on low level to clarify (i.e. code it, use prototypes)
- If stuck at low level (during coding) abstract at high level

‣ What is this about (how would GUI look from user perspective)?

Thinking High and Low

public void move() {
Space oldPos = actual.getPosition();
dices.roll();
Space newPos = board.getSpace(oldPos,
dices.getTotal());
actual.setPosition(newPos);

Think High and Think Low

High

Low

During implementation we must be able to switch between high and low level
abstractions

- If stuck at high level (use cases, GUI …), concretise by implement on low level
to clarify (i.e. code it)

- If stuck at low level (during coding) abstract at high level
- What is this about (how would GUI look from user perspective)?

• We have a running model
- We got the first task/user story up and running!
- Continue to complete chosen user stories
- A small model (with some basic design)
- We only run as tests for now

• Next iteration, more user stories, continue prototyping,
refine design, improve GUI, etc.

Summary

