% B
ZZSEN\D
{ /_1\==A==4,
(=g
e S W
W o %
2, CELAANEY (7
X ===\ B
1829 Yz
ANES VS <
oS

UNIVERSITY OF TECHNOLOGY

Object-oriented Programming Project

Design and implementation

Dr. Alex Gerdes
TDA367/DIT212 - HT 2018

Summary previous lecture

Define the Idea so clear as possible
- Sketch the GUI
Define Epics -> User Stories -> Tasks
Prioritise -> Estimate -> Select -> Sprint (iteration)
Start prototyping (in parallel)

Domain model

Based on User Stories
- Common language
Input for Design model

Requirements Analysis Document

Seminar

CHALMERS

Quiz-based:

- Try to guess the application based on domain model

Purpose:

- Get feedback on domain model
- Give feedback

Process:

- Show domain model UML diagram (prepare a slide)

- Leave out any class names that may give away application
- Give some hints in case of no feedback

- Show project idea / application

- (3 min. quiz, 3 min. app, 3 min. feedback)

Design and implementation

Design and implementation

- The next phase(s) of our process:

- Create a implementable/runnable version of our domain
model: the design model

- Possibly some primitive GUI, some simplified MVC

. Requirement RAD
. artifacts '
. (from RE)

Domain Model

.
! ont
.
.
Tovider -
.
.
.
|] s Design Model
.
.
- idressFack Address
. <Fador) 'SResource:
. [L I — X
. -’*ﬂi s) hm_addresces Nurrber
&
lll c et

Address

€l Jusedan ue iden

addressType : {Snipong, B

preference :{pos urer,

st {ache, }

rom, \alidUnsl : [Date] tacD et
rsonNumber : Fioa]

(Note: In the figure there are different domains for the models, this should not be the case)

Design model

- The design model is the domain model extend with technical classes and
details

- Enables us to implement the application
- NOTE: Design model not per se understandable for all stakeholders
- Must be correspond to domain model

/ Not in problem domain!

AddessFaciory
<<Facory Cass>=

Address
<<\WSResource>>

creaeAddress() ™ - eMailld
ge’."\cc*&ﬁ} A addresses ersonNunmber
deleteAddress) preference Ad d ed
Satus :
i technical
addContactDetaily) detalls
addDependants()
Address getContaciDetaly)
eMailld : used an unique idensiier for the WS-Fesource
addressType : {Shippng, Billing, Comnunicagon}
preference : {postal, courer, emal}
staus : {acive, nacie}
vaidFrom, walidUngl : [Date] contactD etails
sy iy n* oo sl
versonNumber : Float personDetal 0. contaciinfo
ContactDetais
PersonDetals Contactinfo addresslinet
<<FesourcsPropeties: <<ResourceProperiess addressline?
= n oy
Name aoarssslypoe G orounce
frsName H oountry
asName addressType
ageCGroup addressPreference
areaCfinterest

Monopoly: design model

CHALMERS

Dices Monopoly Board

- int first + static final int BALANCE - final List<Space> spaces

- int second + static final int BONUS + Space getSpace(Space’ int)

- Random rand - Player actual + Space getSpace{String)

+ boolean bothAreSix() - final Board board + Space getSpacelint)

+ int getTotal(- final Dices dices + Space getStart{

+ void roll(}) - final List<Player> players + String toString(

+ List<Player> getPlayers{) + boolean passedGo{Space, Space)
| + Player getActual{} + int size
Player + void move()
- Space position + void next{)
- final String name *:S?el::'z:’:’ \ Card
- int balance Space
+ Space getPosition(} : - CAR
+ String getName() shinalString name DOG
: + String getName({}
+ boolean equals{Object} . . IRON
: + String toString(

/it getBalancell + boolean equals{Object) P)
+ int hashCode(} SRt hashCoqde() J static Piece valueOf{String)
+ void income({int) + static Piecel[l valuesﬂ/

+ void setPosition{Space)

Levels in model

The Pong game has a Ball and
two Paddles

- Which will check for collision:

The Pong Game
» Ball or Paddle?

Answer: probably none of!

- There are levels in the model

- Some objects are at a higher
evel, handling objects at lower
evel

- Paddle and Ball are at the “same”
evel, so something higher up
should handle collisions

Aggregates

An aggregate is a cluster of classes treated as a single unit

- All calls to the aggregate go through the root of the aggregate
- This prevents unnecessary dependencies and allows for proper call chains

- Will help to keep objects in a valid state

If there are too many methods in root, add method to return sub-aggregate with a

new root

Monopoly: we treat the complete model as an aggregate
- All calls will go through Monopoly object

Not an universally valid decision, there may be other ways to group (in other

applications)

calls

Monopoly

root |

CHALMERS

MVC recap

N

CHALMERS

User Actions

Controller

Selects a new
view if required
by user action

Controller updates
model as per user
actions

Model triggers
view update

Focus
for now

View queries
model for State

Return values

CHALMERS

Any application with a GUI should use some sort of MVC architecture

- Should methods have return values or should it be handled by an observer?
- Until now we have only worked with the model except the view (GUI) sketches
- NOTE: Methods with return values easier to test

No user interaction in user story

- Complete user story may run within single method call to model

- Any GUI updates probably done using observer pattern, so possibly no need
for return values

User interaction in user story

- More calls to model
- Later handled by control parts of MVC
- More likely with return values

- Controllers inspect return values and act accordingly

Focus
for now

ClassC

T

of
2| 5.
.I@ ||||||||||||||||||| rllllrt ||||||||||||||||||||||
5 TR
o : 2 :
C _ @ Lind
1"
e 5
! Line "
gl e m £ 5
= " o M e
= ... : yf Wy QO
g 0 A @l
(¢ o o
o mm |5
o s
@ 2 :
2 6
D
— 1 %
B R | N
m Dl R R e e e S S [eereee ey
(7))
=

UML sequence diagram

- A sequence diagram Is used to describe the dynamic behaviour of
Interacting objects

- A dry-run is usually the last step before implementation

- Decides directions of associations (possibility to reevaluate)
- Reveals in which class a method should be placed

- Create an UML sequence diagram for some aspects of the design model

If diagram gets very awkward /complex/messy possibly have to modify
domain/design model

- Missing/bad association may be added/changed
- Missing classes may show up

If diagram to big, decide on which abstraction level, factor out lower
levels to separate diagrams

Monopoly: roll dices User Story

As as: player
| want to: roll the dices
so that: | can make a move

Acceptance:

- Player can start the roll of the dices

- All players can see the result

- Atter rolling the player can make a move
- The player can only roll the dices once

Show the board
Show the players on the board
Highlight the active player

Allow the active player to roll the
dices

Show the resulting dice values

Make the dices values available
to other actions (next move tex)

Change active player

Monopoly: roll dices User Story

: Monopoly actual: Player dices : Dices board : Board
move() I
g " | | |
getPosition() $
<«-OldPos _ ___ | ;
: roll()
| > |
getTotal() *
e total |
.

getSpace(oldPos, tétal)

newPos

- From this dry-run it should be possible to Implement the
user story roll dices’

- But In practice things may turn up -> often necessary to modify

Data representation

Spaces|[| board =

Spaces|[][] board =

List<Space> board =

Map<String,

Space> board

Implementing classes

equals contract

an object must be equal to itself

Symmetry
two objects must agree whether or not they are equal

Transitivity
if one object is equal to a second, and the second to a third, the first must be equal to the third

Consistency
if two objects are equal they must remain equal for all time, unless one of them is changed

Null returns false
all objects must be unequal to null

Implement!

CHALMERS

Buy a Product
1. Customer browses through catalog and selects items to buy
2. Customer goes to check out
3. Customer fills in shipping information (address; next-day or 3-day delivery)
4. System presents full pricing information, including shipping
5. Customer flls in credit card information public class Board {
6. System authorizes purchase
7. System confirms sale immediately foon StreetAddress private final List<Card> cards =
8. System sends confirming email to cus gsg:\ee e : City
0..1 lives at 1 .

Email Address State new ArraylList<>();
Alternative: Authorization Failure . Postal Code
At step 6, system fails to authorize credit FurshassFaring Pass COL,mtry private final int size;
Allow customer to re-enter credit card inf 1 \é?,'t'ssttis Liibel

public Board(String[] names){

Alternative: Regular Customer Student Professor
Sa. System displays curent shipping inf o 1o Number Salary this.size = (int) sgrt(names.length);
four digits of credit card information | Average Mark
3b. Customer may accept or override thes——— int k = 0;
Returnto primary scenarioatstep§ | 1S_Eligible To Enroll
Gt cemmar Toxen for (int row = 9; row < size; row++) {

for (int col = 0; col < size; col++) {

‘ Order Input Window ‘ ‘M} ‘ Order Entry | | Order Entry Car‘ds.add(new Car‘d(nameS[k], r‘ow, COl));
| | 5 | K++;

i 1
i 1
1 1

D prepare() 1
T * prepare()

check() 1

[check==TRUE]
delete() isReordemeeded()

| |

[isReordemeeded==TRUE]

] Have all information we need!

(= &= \rite the code and run... ehhhh, run
? how?

Test driven development

CHALMERS

START HERE

WRITE A TEST

CLEAN CODE TEST FAILS

Test Driven
Development

WRITE CODE

REFACTOR TO MAKE

WORKABLE CODE
HOW TO IMPROVE?

TEST PASS

CODE PASSES TEST

How to run?

By creating tests!

Why Is this a good idea?
- We'll only produce the code we need!

- The code will have higher quality, because you will not implement “large”
untestable methods

- Will always have something to run!
- Keeping work focused on the logic of the model

» Great way to clarify the model logic, we must solve the problems
» Possibilities to discover model errors

- Debugging tests are much easier (vs full application)

- Being able to run a test suite against the model at any time Is extremely
useful

» In particular after refactoring

Keep test code separated form the application (as much as possible)

Tests as documentation

@Test
public void testMoveAndPassGo() {

Player player = m.getActivePlayer();

int startBalance = player.getBalance();
player.setPosition(getSpace(30));

m.setDices(new MockDices(12)); // make sure we pass start
m.move();

assertEquals(player.getBalance(),
startBalance + Monopoly.BONUS);

TODO list:

- Implement classes: Monopoly, Player, Dices, Board, Space, Piece

» Create JUnit tests, especially for more complex classes
- Dices uses random, which is difficult to test, need fixed result -> mock!
- Decide where and how to build model
» Constructors?
- Implement method move () in Monopoly
- Create test calling move ()

The development environment

Will use a Maven project
Will run it using JUnit
Version Handling using Git

Continuous Integration with Travis

Monopoly: first version

THE TECHNOLOGY DEMO

THE SOFTWARE
ISN'T 10032

COMPLETE.
V

4

www.dilbert.com scottadams@acl.com

/IF IT HAD A USER)
INTERFACE YOU
WOULD SEE SOME -

THING HERE. ..

HERE. . .AND SOME-

LTIMES HERE.

i

z

Syndicate, Inc.

a.{;-‘loo © 2000 United Feature

(" AND THEN YOUD
BE SAYING, °I
GOTTA GET ME

 SOME OF THAT."

{
ANY
QUESTIONS?

Lol
kil

oai
ey
(3R

Monopoly: first iteration

We have done an iteration(ish):

- Requirements
- Analysis

- Design

- Implementation of a (part of) high priority user story
» As JUnit tests

» Also test for complex classes (unit test)

- Now reflect and refactor!

Using frameworks/libraries

Framework

Model

- There should always be a model!

Look for quality
Be as independent as possible

Thinking High and Low

- During implementation we must be able to switch between
high and low level abstractions

- If stuck at high level (user stories, GUI ...), concretise by implement
on low level to clarify (i.e. code it, use prototypes)

- If stuck at low level (during coding) abstract at high level
» What is this about (how would GUI look from user perspective)?

WRITE-UP
INFORM ¢ 2 LTSRN KEEP TRACK Of ‘h
e L AN e N TN\ - REVIEW
COMPARE - &5 V2o PN - s
romsl s ARSDECIDE £ 2SE8 AR 1L LOOK INTO
PROPOSE 7~ N2 20 S
DISCUSS A EVALUATE
£ ~4/-PLAN

Low

public void move() {

Space oldPos = actual.getPosition();
dices.roll();

Space newPos = board.getSpace(oldPos,
dices.getTotal());
actual.setPosition(newPos);

Summary

We have a running model

- We got the first task/user story up and running!

Continue to complete chosen user stories
- A small model (with some basic design)
- We only run as tests for now

Next iteration, more user stories, continue prototyping,
refine design, improve GUI, etc.

