
Object-oriented Programming Project
Analysis

Dr. Alex Gerdes
TDA367/DIT212 - HT 2018

• Representatives:
- Alrik Kjellberg
- Edvin Leidö
- Pontus Lindblom
- Carolina Larsson
- Oskar Lyrstrand (GU)
- David Weber Fors (GU)

• Contact details on course website

• Meeting after lecture (?)

Course representatives

• User Stories
- Describe the requirements and the acceptance criteria
- Can also hold information about the estimate and the

priority
- Should describe the value of the story
- Can be updated continuously
- INVEST criteria
- In Requirements and Analysis Document (RAD)

• Backlog / sprintlog
- Brake down in tasks
- Vertical slices!

Summary previous lecture

• Workflow:
- Project idea: have this really clear
- Define User Stories
- Prioritise the User Stories
- Break down the User Stories in tasks
- Make rough estimation of User Stories (in person-days)
- Make a selection for 2 to 3 weeks
- Design (this and next lecture)
- Implement (start with defining tests, TDD)
- Check acceptance criteria
- Reflect and iterate

Summary previous lecture

Running example: Monopoly

• The project aims to create a computer based generic version of the well known
board game Monopoly by Parker brothers. Generic in the sense that it's should
be possible to adapt the game to different locations and more.  

• Some general characteristics:
- The application will be turn based. The actual player must explicitly end his or her

turn. The next player is chosen by the application from a preset ordering. The
ordering is generated randomly by the application at start of the round.

- There are no time constraints for a round.
- The application will end according to the rules or possible be canceled.
- If the game is canceled the player with most resources will be the winner.
- The application will handle all of the bank's responsibilities.
- The application will use a GUI very similar to the original game.
- The application does not include a computer-player. It's impossible to play the game

alone (a person can of course choose to play against herself).
- The application does not save interrupted games or collect any statistics (high score

or other).

The idea

Write as
introduction in

RAD

• To aid the definition of user stories we create a
preliminary graphical user interface
- A GUI can be referred to from a user story
- Sketch a simple initial GUI

• A GUI sketch lets you:
- Envision the system (important for customers)
- Explore the problem space with your stakeholders
- Explore the solution space of your system
- Communicate the possible UI design(s) of your system

User interface sketch

User interface sketchMP : User Interface

Some considerations
- Should look like a traditional Monopoly game
- Flat 2d look for now
- Popups? Switching views?
- Animations later?
- Any twist …?

Some considerations:
- Should look like a traditional Monopoly game  
- Flat 2d look for now  
- Popups? Switching views?  
- Animations later?  

Epics

As as: user
I want to: play the Monopoly game
so that: I can have fun

Acceptance:
- User can play game according to MP rules

As as: user
I want to: set up the game
so that: the game can commence

Acceptance:
- User can set the options
- After all options have been defined

(number of players etc.), the game is
ready to start

- …

As as: player
I want to: take a turn
so that: I can try to win

Acceptance:
- User can roll dices
- User can make a move

- The state of the game is updated
according to MP rules

- …

Remember DoD

User Stories
As as: user
I want to: choose the number of players
so that: I configure the game

Acceptance:
- Application can read input from user
- User can fill in number of players
- The game configuration is updated according to

user input
- The game cannot start before the number

players is configure
- The number of players can not be changed after

the game has started
- ….

As as: player
I want to: roll the dices
so that: I can make a move

Acceptance:
- Player can start the roll of the dices
- All players can see the result
- After rolling the player can make a move
- The player can only roll the dices one

time
- …

And many more!

Breakdown in tasks

As as: player
I want to: roll the dices
so that: I can make a move

Acceptance:
- Player can start the roll of the dices
- All players can see the result
- After rolling the player can make a move
- The player can only roll the dices once
- …

• Show the board

• Show the players on the board

• Highlight the active player

• Allow the active player to roll the
dices

• Show the resulting dice values

• Make the dices values available
to other actions (next move tex)

• Change active playerVertical slices!

Non-functional requirementsNon-functional Requirements

Tɛˆ˔ȵɐɸʎɸ˔˵

Non-functional requirements
- Usability, the ease of use and learnability of a human-made object
- Reliability, probably not applicable (NA) to us
- Performance, probably NA
- Supportability
- Testability (yes, implicitly mandatory in course more to come...)

- This means: The code we write should be possible to test!
- Implementation (any restrictions? Yes, Java in this course)
- Packaging and installation
- Legal

Some non-functional examples from MP:

- Possible to select different location (Alingsås, Warszawa, Ouagadougou,...)
- Must be possible to change texts,
- Internationalization,...must use internal representation (keys) for all text

- Possibly small screen
- Will use popup for details, dialogs for messages

- And of course testability …

1. Introduction ✅

2. Requirements ✅
2.1.User Stories

• Functional Requirements
• Non-functional Requirements

2.2.GUI ✅
• Sketch

3. Domain model ❌

RAD so far

• During this phase you should start out technical
prototyping
- GUI
- Services (file handling, sound, graphics, Android, etc....)
- Hard code, mock anything you need

Prototyping

private JPanel createCardsPanel() {
 int size = board.size();
 cardButtons = new JButton[size][size];
 JPanel pnl = new JPanel();
 pnl.setLayout(new GridLayout(size, size));
 for (int row = 0; row < size; row++) {
 for (int col = 0; col < size; col++) {
 JButton b = new JButton();
 b.setBackground(cardBack);
 b.addActionListener(this);
 b.setName(row + ":" + col); // Use this as lookup later,
see actionPerformed
 b.setPreferredSize(new Dimension(WIDTH / size, HEIGHT /
size));
 pnl.add(b); // Add to panel
 cardButtons[row][col] = b; // Store so we can access later
 }
 }
 return pnl;
}

Prototyping
public void initMaterials() {

wall_mat = new Material(assetManager,

"Common/MatDefs/Misc/Unshaded.j3md");

TextureKey key = new

TextureKey("Textures/Terrain/BrickWall/BrickWall.jpg");

key.setGenerateMips(true);

Texture tex = assetManager.loadTexture(key);

wall_mat.setTexture("ColorMap", tex);

…
}

During this phase you should start out technical prototyping
- Technical prototyping for now

- GUI
- Services (file handling, sound, graphics, Android, etc.…)
- Hard code, mock anything you need.

Analysis

Need for design

Overarching goal:

use abstraction to keep the design of
your application manageable

• Analysis is the second phase in the process
- During analysis we try to create a model of the problem domain as a

collection of interacting objects

• The Domain model
- Is the core of our application (domain modelling)
- The model is an abstraction of some problem
- Is input for the design model
- Should be kept in sync!

• Based on User Stories and idea, have to find:
- Objects and how they are related (associations)
- Classes for the objects
- To a lesser degree: attributes, behaviour (methods)
- Avoid too many details (inheritance, ...)

Domain model

• Domain-Driven Design by Eric Evans

• The book addresses the analysis and
design of software based on domain
knowledge

• Pretty advanced, but useful

• Free compact version available, link on
course website

Domain-driven design

Domain-Driven Design:
Tackling Complexity in
the Heart of Software
– By: Eric Evans

• This text address the
analysis and design of
software the relies on
complex domain
specific knowledge

• During this phase we adhere to domain driven design
- focus on the core domain and domain logic
- Explore models in a creative collaboration of domain

practitioners and software practitioners.
- Using the (ubiquitous) language of the domain

• Solution to the problem lies in the domain model
(implies fat classes)

• Design application based on model of the domain

Focus on the model

No ’technobabble’Technobabble

Remember: Use domain language
- … not technobabble (like in picture)!!!

• A common language between the domain experts and
the developers

• The Domain model should be based heavily on the
Ubiquitous Language

• We have a (sub)section in the RAD on this

• The common language connects the different models:
- Domain Model -> Design Model -> Implementation

Ubiquitous Language

• Different roles in a project: domain experts, designers,
developers, users

• Communication is difficult but essential:
- Use common language
- Have a central model (the domain model)

• Domain model facilitates discussion

• Iteratively develop the domain model

• Reflect and keep the domain model up-to-date
- Do not allow domain model, design model and implementation

to diverge

A central model

• To maintain the correspondence between model and
implementation there are specific techniques that Eric
Evans suggests.
- Isolate the domain using a layered architecture
- Domain layer techniques

‣ Use associations wisely
‣ Use appropriate model elements
‣ Utilize Modules

Prevent divergence

src: https://www.cs.colorado.edu/~kena/classes/5448/f12/presentation-materials/roads.pdf

• Associations

• Three patterns of model elements
- Entities

‣ An object that represents something with continuity and identity – something
that is tracked through different states or even across different
implementations

- Value Objects
‣ Attribute that describes the state of a particular object aspect

- Services
‣ Actions or operations

• Modules
- “The ideas of high cohesion and low coupling, foten thought of as technical

metrics, can be applied to the concepts themselves. In a MODEL-DRIVEN
DESIGN, MODULES are part of the model, and they should reflect concepts in
the domain (pg. 82).”

Domain Layer Building Blocks

• Based on User Stories from the RAD start with the
following simple method:
- Underline nouns in use cases, will become classes
- Underline verbs in use cases, will become methods
- Sometimes hard to know which method belongs to which

class,
‣ put them in any that seems sensible, improve in next

iteration
‣ or leave out for now, will show up later!

- Include as much as possible
‣ Easy to skip later

Extracting classes

• Monopoly

• Dice

• Piece

• Board

• Space (Street,
Electricity, etc. ...)

• Jail

Monopoly classes

• Card

• Rent

• Player

• Balance

• Building

• Bank

UML Class Diagram

Model represented as an UML class diagram
- Possibly have to break down

- Also see Package diagrams later
- A static view
- NOTE: Associations and multiplicity is between objects

The diagram has a meaning.
- Symbols, notations etc should end up as runnable code!
- Exercise: Transform diagram to Java!

• Domain Model represented as an  
UML class diagram
- Leave out many details
- A static view
- NOTE: Associations and multiplicity is between objects
- Use standard notation!

• The diagram has a meaning.
- Symbols, notations etc. should end up as runnable code!

UML class diagram

• A model typically has many associations which can
make implementation and maintenance complicated
(especially many-to-many associations)

• Making associations more tractable
- Impose a traversal direction
- Add a qualifier
- Eliminate nonessential associations

• This makes associations more expressive of the model
as well as more tractable

• Again, use User Stories as a source of inspiration

Associations

Multiplicity and directionMultiplicity and Direction

Player Property

1 n

Player Property

1 n

Player

Property

Property

Property

Player

Property

Property

PropertyObjects

Same multiplicity

Player has
Collection
of
Properties

Each
Properties
has
reference
to same
player

Association classAssociations Class

Consult Project

0..m 0..n

Consult Project

1 1

Allocation

Set<Allocation>
somewhere in
program

m n

M:N
bidirectional

If mutual and many to many association.
- Create an association class (Allocation)

• Mutual (bidirectional) associations should be avoided
- Must keep two object in sync (reference each other) i.e. if

new owner have to change 2 references
- Domino effects (change one, affect other)
- Classes not understood in separation

• Select association that seems to be used most, remove
other

Mutual Associations

Mutual Associations

Player Property

1 0..n

1

Mutual!

1

owner

properties

Which association is more important?

Mutual (bidirectional) associations are bad (or at least we avoid)
- Must keep two object in synch (reference each other) i.e. if new owner have

to change 2 references
- Domino effects (change one, affect other)
- Classes not understood in separation

Select association that seems to be used most, remove other.

Monopoly domain model

2..8

40
1

MP : Domain Model

Player

Dice

Monopoly Board

SpacePiece

1 1

1
2

1
1

1

1

position

1

The first domain model (iteration 1)
- Targeting the highest priority use cases: Move and End Turn
- I.e. here are the (minimal number of) classes we need to be able to run the

use cases (hopefully?)
- Remainder: This is a model of the domain NOT the full software

First iteration!

Another domain modelOther Domain Model

Dictionary
Calculator

PlayerWhat is this?

HolderTilebagBonus

Board

Position Tile

1
1

1
n

1 2

1
1

1
n

1 1

1

8

1

n

1

1
1

What is this?
- The model should be able to communicate something!

Yet another domain modelYet Another Domain Model

Database

PlayerMonster Router

What is
this?

Sound

HighscoreLevel

Socket

3D Engine

GUI

1
1

1
1

1
n

n
1

1 n

1 1

1 1

n
1

1 1

1
1

What is this?
- This is NOT a model of some problem domain …
- … it’s a mess of technical details and domain concepts

Efficient modelling

Optimal is to first draw on whiteboard!
- Very fast drawing
- Very fast communication, everyone can participate
- Use phone/camera to document

Later, Tools to draw UML
- When model getting more stable
- UMLet plugin to Eclipse, fastest possible
- Linux : Dia
- Mac/Win? ...

• Optimal is to first draw on whiteboard!
- Very fast drawing
- Very fast communication, everyone can participate
- Use phone/camera to document

• Later use tools to draw UML

Efficient modelling

• Unique identity?

• Equality?

• Immutable?

• Persistence?
- Will any objects survive the execution of the program?

• Lifecycle
- When is object created?
- How long does it exist?
- When destroyed?

• …

Important Object Characteristics

Thin classAnemic Class
public class MyClass {

 private … data;
private … moreData;
private … yetMoreData;

public … setData { ...}

public … getData { ...}

public … setMoreData { ...}

public … getMoreData { ...}

public … setYetMoreData { ...}

public … getYetMoreData { ...}

}

No
behaviour!

Anemic class
- No behaviour
- Anemic is ok for some data heavy classes (entity classes), …
- ... but if all classes are like this, no domain driven design..

Fat classFat Class
public class Board {
 private final List<Card> cards;

 public List<Card> unSelectPair() {
 List<Card> s = new ArrayList<>(selected);
 selected.clear();
 return s;
 }

 public List<Card> removeSelected() {
 List<Card> s = new ArrayList<>(selected);
 cards.removeAll(selected);
 selected.clear();
 return s;
 }

 public boolean hasMatchingPair() {
 return selected.size() == 2 &&
 selected.get(0).equalsByName(selected.get(1));
 }

Data and
behaviour!

Class holds data and have behaviour.

3. Domain Model ✅
3.1.Class responsibilities ✅

Finishing RAD

Best practices for modelling (Evans)

Isolating the domain

Domain-Driven Design: Tackling Complexity in the Heart of
Software by Eric Evans

CS618

Evans’ Layers (Isolating the Domain)
• A.k.a. Presentation Layer
• Show Information
• Interpret commands

User Interface
Layer

• Thin layer, sirects UI commands to jobs in the Domain Layer
• Should not contain Business Rules or Knowledge
• No business “state”, may have progress “state”

Application
Layer

• Business objects, their rules, and their state
• The majority of the book focuses here Domain Layer

• Generic technical capabilities to support the higher layers
• Message sending, persistence
• Supports the interactions between topmost patterns

Infrastructure
Layer

src: selab.netlab.uky.edu/homepage/CS618-DDD-Foundations.pdf

• From Evans:
- An object defined primarily by its identity is called an entity
- What is the identity?

‣ Consider two person objects: same name, same date of birth
etc.

‣ Generate an identifier
- Their class definitions, responsibilities, attributes, and

associations should revolve around who they are, rather
than the particular attributes they carry

Entities

• Could make all objects entities…
- ”Software design is a constant battle with complexity. We must make

distinctions so that special handling is applied only where necessary (pg. 98).”
- Only use entities where necessary

• An object that represents a descriptive aspect of the domain with no
conceptual identity

• It is recommended that value objects be immutable

• “[I]nstantiated to represent elements of the design that we care about
only for what they are, not who or which they are (pg. 98).”

• Examples of possible Value objects:
- Money/Currency class
- Point class in a drawing application

Values

• Some aspects of the domain don’t map easily to objects

• A Service is some behaviour, that is important to the domain, but does
not “belong” to an Entity or Value object

• Example: Account Transfer

• Encapsulate an important domain concept

• Operation names should come from the UBIQUITOUS LANGUAGE

• Parameters and results should be domain objects, the operation in
itself is stateless

• Note: There is a distinction between services discussed here that are
used in the domain layer and those of other layers. Technical services
lack business meaning.

Services

• A group of associated objects which are considered as a unit with
regard to data changes

• An aggregate should have one root

• The root is an entity object

• Outside objects can reference root, but not the other members of
the aggregate

Aggregates

• Encapsulate the information necessary for object
creation
- Includes logic for all creating all the members of an

aggregate
- Allows us to enforce invariants during creation
- Related GoF Design Patterns

‣ Factory Method
‣ Abstract Factory

- Designing the Factory Interface
‣ Each operation must be atomic
‣ The Factory will be coupled to its arguments

Factories

• Encapsulates logic to obtain object references

• Provides a mechanism to persist/retrieve an object
- Keeps persistence code out of the domain layer

• Repository interface should be driven by the domain model

• Repository implementation will be closely linked to the infrastructure

Repositories

Domain-Driven Design: Tackling Complexity in the Heart of
Software by Eric Evans

CS618

Repositories

• “MODULES give people two views of the model: They can look at
detail within a MODULE without being overwhelmed by the whole,
or they can look at relationships between MODULES in views that
exclude interior detail (pg. 109).”

• The MODULES in the domain layer should emerge as a meaningful
part of the model, telling the story of the domain on a larger scale
(pg. 109).”

• MODULES can be dangerous since the cost of refactoring MODULES
can be prohibitive

• “If your model is telling a story, the MODULES are chapters (pg. 110).”

• “Give the MODULES names that become part of the UBIQUITOUS
LANGUAGE (pg. 111).”

Modules

• “Type names, method names, and argument names all
combine to form an INTENTION-REVEALING INTERFACE
(pg. 247).”

• “Name classes and operations to describe their effect
and purpose, without reference to the means by which
they do what they promise (pg. 247).”

• “Write a test for a behaviour before creating it, to force
your thinking into client developer mode (pg. 247).”

Intention revealing interfaces

• “Interactions of multiple rules or compositions of
calculations become extremely difficult to predict (pg.
250.)”

• To make code easier to use, separate calculations and
state change into different operations.

Side-effect free methods

• “Assertions make side effects explicit and easier to deal
with (pg. 255).”

• “State post-conditions of operations and invariants of
classes and AGGREGATES. If ASSERTIONS cannot be
coded directly in you programming language, write
automated unit tests for them (pg. 256).”

Assertions

Navigation map

encapsulate with

MODEL-DRIVEN
DESIGN

express model with

isolate domain with

encapsulate with

ENTITIES

VALUE OBJECTS

LAYERED
ARCHITECTURE

AGGREGATES

REPOSITORIES

act as root of

SMART UI

X

FACTORIES

encapsulate with

express model with

encapsulate with

mutually exclusive
choices

access with

maintain integrity with

access withSERVICES

express model with

Summary

• Analysis focuses on building a domain model
- We used the requirements from RAD (user stories) to extract

the domain model
- We expressed the model as an UML-class diagram
- We documented model in RAD

• Next: From domain model to first implementation

Summary

Course process

Write User Stories and
sketch a GUI

Select User Stories and use
GUI to create object model

Dry run the model

Implement and test
 the model

Expand model

Finished?

Idea

No?

Text, pictures

UML

JUnit, Java

Reflect!

Iteration planning
Iteration Planning

Iterations Last Iteration

 w1 w3 Demo

First runnable
version Add functionality

Iteration 1

w8

Iterations and weeks
- Must have something to run late week 3 (probably some tests, more later …)!

• https://www.cs.colorado.edu/~kena/classes/5448/f12/
presentation-materials/roads.pdf

• selab.netlab.uky.edu/homepage/CS618-DDD-
Foundations.pdf

• https://domainlanguage.com/ddd/reference/

References

https://www.cs.colorado.edu/~kena/classes/5448/f12/presentation-materials/roads.pdf
https://www.cs.colorado.edu/~kena/classes/5448/f12/presentation-materials/roads.pdf
http://selab.netlab.uky.edu/homepage/CS618-DDD-Foundations.pdf
http://selab.netlab.uky.edu/homepage/CS618-DDD-Foundations.pdf

