
QuickCheck

John Hughes

DEMO

0

5000

10000

15000

20000

25000

30000

35000

40000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Te
st

s p
er

 m
in

ut
e

Nodes

Registry tests on multiple nodes

Four core/8HT SkyLake i7 Dual core/4HT Ivy Bridge i7

Architecture

Master

Worker Worker Worker Worker

Generate and run
tests

Count tests, print
dots, start and stop

How can the Master count the
tests?

Master

Worker Worker Worker Worker

How can the Master stop the
workers?

Master

Worker Worker Worker Worker

Benchmark

Bouncer Mirror

1.2 million/second

Multiple bouncers

Bouncer Mirror

Bouncer Mirror

Bouncer Mirror

0

500000

1000000

1500000

2000000

2500000

3000000

3500000

4000000

4500000

1 2 3 4 5 6 7 8 9 10

Ro
un

d
tr

ip
s p

er
 se

co
nd

P--number of bouncers

Message round-trips per second
Four core/8 thread i7

P bouncers, P mirrors

Mirror

Multiple bouncers, one mirror

Bouncer

Bouncer

Bouncer

0

500000

1000000

1500000

2000000

2500000

3000000

3500000

4000000

4500000

1 2 3 4 5 6 7 8 9 10

Ro
un

d
tr

ip
s p

er
 se

co
nd

P--number of bouncers

Message round-trips per second
Four core/8 thread i7

P bouncers, P mirrors P bouncers, 1 mirror

Batch permissions?

Master

Worker Worker Worker Worker

BUT this may delay termination!

Alternative Architecture

Master

Manager Manager Manager Manager

Worker Worker Worker WorkerAn
ot

he
r?

Ye
s

• Every worker
communicates with its
own manager—
scalable!

• Stopping can be
slightly delayed

> eqc:quickcheck(examples:prop_reverse()).
..
OK, passed 100 tests
true
> eqc:quickcheck(examples:prop_reverse()).
..(x10).(x1).........
OK, passed 119 tests
true
> eqc:quickcheck(eqc:in_parallel(examples:prop_reverse())).
..(x10)..(x1)......
OK, passed 126 tests
true
> eqc:quickcheck(eqc:on_nodes(examples:prop_reverse())).
..(x10)................................
........................(x1).........
OK, passed 669 tests

But how bad is it to run a
few extra tests?

What about node placement?

Master

Manager Manager Manager Manager

Worker Worker Worker WorkerAn
ot

he
r?

Ye
s

What about node placement?

Master

Manager Manager Manager Manager

Worker Worker Worker Worker

What about node placement?

Master

Manager Manager Manager Manager

Worker Worker Worker WorkerAn
ot

he
r?

Ye
s

0

20000

40000

60000

80000

100000

120000

140000

160000

1 2 3 4 5 6 7 8 9 10

P bouncers, 1 mirror, different nodes
Four core/8 HT i7

0

200000

400000

600000

800000

1000000

1200000

1400000

1600000

1 2 3 4 5 6 7 8 9 10

P bouncers, 1 mirror
Four core/8HT i7

Different nodes Same node

10-30x slower from a
different node!

0

5000

10000

15000

20000

25000

30000

0 5 10 15 20 25 30 35

P bouncers, 1 mirror
Bouncers on dual core laptop,

mirror on quad core

0

200000

400000

600000

800000

1000000

1200000

1400000

Same LAN Same Host Same Node

Bounces per second
(single bouncer)

0

1

2

3

4

5

6

7

Same LAN Same Host Same Node

Lo
g

sc
al

e
Bounces per second

(single bouncer)

50x
30x

What about success messages?

Master

Manager Manager Manager Manager

Worker Worker Worker WorkerSu
cc

es
s

Two-way vs one-way

Bouncer Mirror

1.2 million/second

5.4 million/second

0
1
2
3
4
5
6
7
8

Same LAN Same Host Same Node

Lo
g

sc
al

e
Bounces/Messages per

second

Two way One way

4x
10x

100x

One more optimization…

Master

Manager Manager Manager Manager

Worker Worker Worker WorkerSu
cc

es
s

There are a LOT of
success messagesCount

them!

Send the
total every

100ms

• Tripled the speed of
quickcheck(true)!

• Stopping can be even
more delayed

Lessons

• There is at least an order of magnitude difference
between communication costs

• Within a node
• Between nodes
• Between hosts

• Latency is much worse affected than bandwidth
• This affects design for performance

• Favours asynchronous over synchronous communication
between nodes

• Optimising performance may require changes to
observable behaviour

• …and we didn’t even consider fault tolerance

	QuickCheck�
	DEMO
	Slide Number 3
	Architecture
	How can the Master count the tests?
	How can the Master stop the workers?
	Benchmark
	Multiple bouncers
	Slide Number 9
	Multiple bouncers, one mirror
	Slide Number 11
	Batch permissions?
	Alternative Architecture
	Slide Number 14
	Slide Number 15
	What about node placement?
	What about node placement?
	What about node placement?
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	What about success messages?
	Two-way vs one-way
	Slide Number 26
	One more optimization…
	Slide Number 28
	Lessons

