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Four core/8HT SkyLake i7 Dual core/4HT Ivy Bridge i7



Architecture

Master

Worker Worker Worker Worker

Generate and run
tests

Count tests, print 
dots, start and stop



How can the Master count the 
tests?
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Worker Worker Worker Worker



How can the Master stop the 
workers?
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Benchmark

Bouncer Mirror

1.2 million/second



Multiple bouncers

Bouncer Mirror

Bouncer Mirror

Bouncer Mirror
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Mirror

Multiple bouncers, one mirror

Bouncer

Bouncer

Bouncer
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Batch permissions?

Master

Worker Worker Worker Worker

BUT this may delay termination!



Alternative Architecture
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• Every worker
communicates with its
own manager—
scalable!

• Stopping can be 
slightly delayed



> eqc:quickcheck(examples:prop_reverse()).
....................................................................................................
OK, passed 100 tests
true
> eqc:quickcheck(examples:prop_reverse()).
....................................................................................................(x10).(x1).........
OK, passed 119 tests
true
> eqc:quickcheck(eqc:in_parallel(examples:prop_reverse())).
....................................................................................................(x10)..(x1)......
OK, passed 126 tests
true
> eqc:quickcheck(eqc:on_nodes(examples:prop_reverse())).
....................................................................................................(x10)................................
........................(x1).........
OK, passed 669 tests

But how bad is it to run a 
few extra tests?



What about node placement?
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10-30x slower from a 
different node!
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What about success messages?
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Two-way vs one-way

Bouncer Mirror

1.2 million/second

5.4 million/second
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One more optimization…

Master

Manager Manager Manager Manager

Worker Worker Worker WorkerSu
cc

es
s

There are a LOT of
success messagesCount 

them!

Send the 
total every

100ms



• Tripled the speed of
quickcheck(true)!

• Stopping can be even
more delayed



Lessons

• There is at least an order of magnitude difference
between communication costs

• Within a node
• Between nodes
• Between hosts

• Latency is much worse affected than bandwidth
• This affects design for performance

• Favours asynchronous over synchronous communication
between nodes

• Optimising performance may require changes to 
observable behaviour

• …and we didn’t even consider fault tolerance
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