QuickCheck

John Hughes

DEMO

Registry tests on multiple nodes

How can the Master stop the workers?

Benchmark

1.2 million/second

Multiple bouncers

Message round-trips per second Four core/8 thread i7

Multiple bouncers, one mirror

Message round-trips per second Four core/8 thread i7

BUT this may delay termination!

Alternative Architecture

 Every worker communicates with its own manager scalable! Stopping can be slightly delayed

```
> eqc:quickcheck(examples:prop_reverse()).
OK, passed 100 tests
true
> eqc:quickcheck(examples:prop_reverse()).
      .....(x10).(x1).....
OK, passed 119 tests
true
> eqc:quickcheck(eqc:in_parallel(examples:prop_reverse())).
 .....(x10)..(x1).....
OK, passed 126 tests
true
> eqc:quickcheck(eqc:on_nodes(examples:prop_reverse())).
          .....(x10).....
.....(x1).....
OK, passed 669 tests
                            But how bad is it to run a
                                few extra tests?
```

What about node placement?

What about node placement?

What about node placement?

P bouncers, 1 mirror, different nodes Four core/8 HT i7

P bouncers, 1 mirror Four core/8HT i7

P bouncers, 1 mirror Bouncers on dual core laptop, mirror on quad core

	Bounces per second		
	(single	e bounce	r)
1400000			
1200000			
1000000			
800000			
600000			
400000			
200000			
0			
	Same LAN	Same Host	Same Node

Same LAN

Same Host

Same Node

What about success messages?

Two-way vs one-way

1.2 million/second5.4 million/second

Bounces/Messages per second

One more optimization...

• *Tripled* the speed of quickcheck(true)!

 Stopping can be even more delayed

Lessons

- There is at least *an order of magnitude* difference between communication costs
 - Within a node
 - Between nodes
 - Between hosts
- Latency is much worse affected than bandwidth
- This affects design for performance
 - Favours asynchronous over synchronous communication between nodes
- Optimising performance may require *changes to observable behaviour*
- ...and we didn't even consider fault tolerance