
Chalmers | Göteborgs Universitet
Alejandro Russo, Computer Science and Engineering

Advanced Functional Programming TDA342/DIT260

Tuesday 14th March, 2017, Samhällsbyggnad, 8:30.

(including example solutions to programming problems)

Alejandro Russo (Anton Ekblad, tel. 0707 579 070)

• The maximum amount of points you can score on the exam: 60 points. The grade for the
exam is as follows:

Chalmers: 3: 24 - 35 points, 4: 36 - 47 points, 5: 48 - 60 points.
GU: Godkänd 24-47 points, Väl godkänd 48-60 points
PhD student: 36 points to pass.

• Results: within 21 days.

• Permitted materials (Hjälpmedel): Dictionary (Ordlista/ordbok).

You may bring up to two pages (on one A4 sheet of paper) of pre-written notes – a “summary
sheet”. These notes may be typed or handwritten. They may be from any source. If this
summary sheet is brought to the exam it must also be handed in with the exam (so make a
copy if you want to keep it).

• Notes:

– Read through the paper first and plan your time.

– Answers preferably in English, some assistants might not read Swedish.

– If a question does not give you all the details you need, you may make reasonable
assumptions. Your assumptions must be clearly stated. If your solution only works
under certain conditions, state them.

– Start each of the questions on a new page.

– The exact syntax of Haskell is not so important as long as the graders can understand
the intended meaning. If you are unsure just put in an explanation of your notation.

– Hand in the summary sheet (if you brought one) with the exam solutions.

– As a recommendation, consider spending around 1h for exercise 1, 1.20h for exercise 2,
and 2hs for exercise 3. However, this is only a recommendation.

– To see your exam: by appointment (send email to Alejandro Russo)

1

Problem 1: (Applicative Functors)
In the lectures, we saw an example of an applicative functor which was not a monad. The

example consisted on the data type definition:

data Phantom o a = Phantom o

It is called Phantom since it contains no value of type a—it is like an empty body, a spirit, a
phantom.

We saw that we can define the instances Functor and Applicative as follows.

instance Functor (Phantom o) where
fmap (Phantom o) = Phantom o

instance Monoid o ⇒ Applicative (Phantom o) where
pure = Phantom 1
Phantom o1 <∗> Phantom o2 = Phantom (o1 · o2)

In these definitions, we assume a monoid structure for elements of type o, i.e. it contains an
identity element 1 and a associative binary operation (·).

In the lectures, we showed that when o is of type Int , any implementation of bind, i.e.

(>>=) :: Phantom Int a → (a → Phantom Int b)→ Phantom Int b

violates the left identity law.

i) (Task) Come up with a type o′ and an implementation of instance Monad (Phantom o ′),
where Phantom o′ is indeed a monad, i.e. it respects the monadic laws (see Figure 4). (4p)

Solution:

data Unit = Unit -- o’

instance Monoid Unit where
1 = Unit
(·) Unit Unit = Unit

instance Monad (Phantom Unit) where
return = Phantom Unit
Phantom Unit >>= = Phantom Unit

return a >>= k
≡ Unit
≡ k a

ma >>= return
≡ Unit
≡ ma

ma >>= k >>= l
≡ Unit >>= l
≡ Unit
≡ ma >>= (λa → k a >>= l)

2

ii) The composition of two functors f and g is defined by the following data type:

data Comp c d a = Comp (c (d a))

instance (Functor c,Functor d)⇒ Functor (Comp c d) where
fmap f (Comp cda) = Comp (fmap (fmap f) cda)

(Task) Show that Comp f g a is also a functor, so it fulfills the identity and map fusion laws (see
Figure 5). In other words, you will show that the composition of functors results in a functor. (8p)

{-Identity -}
id (Comp cda)
{-by def. of id -}

≡ Comp cda
{-by def. of id -}

≡ Comp (id cda)
{-by Identity on functor c -}

≡ Comp (fmap id cda)
{-id has type (d a) to (d a), so by Identity on functor d -}

≡ Comp (fmap (fmap id) cda)
{-By def. of fmap on Comp -}

≡ fmap id (Comp cda)

{-Map fusion -}
fmap (f ◦ g) (Comp cda)

≡ {-by def. of fmap on Comp -}
Comp (fmap (fmap (f ◦ g)) cda)
{-By map fusion on d -}

≡ Comp (fmap (fmap f ◦ fmap g) cda)
{-By map fusion on c -}

≡ Comp ((fmap (fmap f) ◦ fmap (fmap g)) cda)
{-By def. of (.) -}

≡ Comp (fmap (fmap f) (fmap (fmap g) cda))
{-By def. fmap on Comp -}

≡ fmap f (Comp (fmap (fmap g) cda))
{-By def. of fmap on Comp -}

≡ fmap f (fmap g (Comp cda))
{-By def. of (.) -}

≡ (fmap f ◦ fmap g) (Comp cda)

iii) (Task) Applicatives are closed under functor composition, too! Define the applicative instance for
the composition of two applicatives.

instance (Applicative f ,Applicative g)⇒ Applicative (Comp f g) where
...

Solution:

3

pure a = Comp $ pure (pure a)
Comp fgf <∗> Comp fga = Comp $ (<∗>) <$> fgf <∗> fga

Show that your definitions of pure and (<∗>) satisfy the applicative laws (see Figure 6).

Solution: Identity

pure id <∗> Comp vv
≡ {-def. of pure for Comp f g -}

Comp (pure (pure id)) <∗> Comp vv
≡ {-def. of (<∗>) for Comp f g -}

Comp ((pure (<∗>) <∗> pure (pure id)) <∗> vv)
≡ {-homomorphism for f -}

Comp (pure (pure id <∗>) <∗> vv)
≡ {-identity for g -}

Comp (pure id <∗> vv)
≡ {-identity for f -}

Comp vv

Composition

pure f <∗> (pure g <∗> x)
≡ {-composition -}

pure (◦) <∗> pure f <∗> pure g <∗> x
≡ {-homomorphism -}

pure (f ◦) <∗> pure g <∗> x
≡ {-homomorphism -}

pure (f ◦ g) <∗> x

pure f <∗> (pure g <∗> x <∗> y)
≡ {-composition -}

pure (◦) <∗> pure f <∗> (pure g <∗> x) <∗> y
≡ {-homomorphism -}

pure (f ◦) <∗> (pure g <∗> x) <∗> y
≡ {-lemma -}

pure ((f ◦) ◦ g) <∗> x <∗> y

pure (◦) <∗> Comp ff <∗> Comp gg <∗> Comp zz
≡ {-def. of pure for Comp f g -}

Comp (pure (pure (◦))) <∗> Comp ff <∗> Comp gg <∗> Comp zz
≡ {-def. of (<∗>) for Comp f g -}

Comp (pure (<∗>) <∗> pure (pure (◦)) <∗> ff) <∗> Comp gg <∗> Comp zz
≡ {-homomorphism for f -}

Comp (pure (pure (◦) <∗>) <∗> ff) <∗> Comp gg <∗> Comp zz

4

≡ {-def. of (<∗>) for Comp f g -}
Comp (pure (<∗>) <∗> (pure (pure (◦) <∗>) <∗> ff) <∗> gg) <∗> Comp zz
≡ {-lemma for f -}

Comp (pure ((<∗>) ◦ (pure (◦) <∗>)) <∗> ff <∗> gg) <∗> Comp zz
≡ {-def. of (<∗>) for Comp f g -}

Comp (pure (<∗>) <∗> (pure ((<∗>) ◦ (pure (◦) <∗>)) <∗> ff <∗> gg) <∗> zz)
≡ {-lemma for f -}

Comp (pure (((<∗>)◦) ◦ ((<∗>) ◦ (pure (◦) <∗>))) <∗> ff <∗> gg <∗> zz)
≡ {-def. of (◦) -}

Comp (pure (λx y z → pure (◦) <∗> x <∗> y <∗> z) <∗> ff <∗> gg <∗> zz)
≡ {-composition for g -}

Comp (pure (λx y z → x <∗> (y <∗> z)) <∗> ff <∗> gg <∗> zz)
≡ {-def. of (◦) and ($) -}

Comp (pure (($(<∗>)) ◦ ((◦) ◦ ((◦) ◦ (<∗>)))) <∗> ff <∗> gg <∗> zz)
≡ {-lemma for f -}

Comp (pure ($(<∗>)) <∗> (pure ((◦) ◦ ((◦) ◦ (<∗>))) <∗> ff) <∗> gg <∗> zz)
≡ {-interchange for f -}

Comp (pure ((◦) ◦ ((◦) ◦ (<∗>))) <∗> ff <∗> pure (<∗>) <∗> gg <∗> zz)
≡ {-lemma for f -}

Comp (pure (◦) <∗> (pure ((◦) ◦ (<∗>)) <∗> ff) <∗> pure (<∗>) <∗> gg <∗> zz)
≡ {-composition for f -}

Comp (pure ((◦) ◦ (<∗>)) <∗> ff <∗> (pure (<∗>) <∗> gg) <∗> zz)
≡ {-lemma for f -}

Comp (pure (◦) <∗> (pure (<∗>) <∗> ff) <∗> (pure (<∗>) <∗> gg) <∗> zz)
≡ {-composition for f -}

Comp (pure (<∗>) <∗> ff <∗> (pure (<∗>) <∗> gg <∗> zz))
≡ {-def. of (<∗>) for Comp f g -}

Comp ff <∗> Comp (pure (<∗>) <∗> gg <∗> zz)
≡ {-def. of pure for Comp f g -}

Comp ff <∗> (Comp gg <∗> Comp zz)

Homomorphism

pure f <∗> pure v
≡ {-def. of pure for Comp f g -}

Comp (pure (pure f)) <∗> Comp (pure (pure v))
≡ {-def. of (<∗>) for Comp f g -}

Comp ((<∗>) <$> pure (pure f) <∗> pure (pure v))
≡ {-homomorphism for f -}

Comp ((pure f <∗>) <$> pure (pure v))
≡ {-homomorphism for f -}

Comp (pure (pure f <∗> pure v))
≡ {-homomorphism for g -}

Comp (pure (pure (f v)))
≡ {-def. of pure for Comp f g -}

pure (f v)

5

Interchange

Comp ff <∗> pure v
≡ {-def. of pure for Comp f g -}

Comp ff <∗> Comp (pure (pure v))
≡ {-def. of (<∗>) for Comp f g -}

Comp ((<∗>) <$> ff <∗> pure (pure v))
≡ {-interchange for f -}

Comp (($pure v) <$> ((<∗>) <$> ff))
≡ {-composition for f -}

Comp ((◦) <$> ($pure v) <$> (<∗>) <$> ff)
≡ {-homomorphism for f -}

Comp ((<∗> pure v) <$> ff)
≡ {-interchange for g -}

Comp ((pure ($v) <∗>) <$> ff)
≡ {-homomorphism for f -}

Comp ((<∗>) <$> pure (pure ($v)) <∗> ff)
≡ {-def. of (<∗>) for Comp f g -}

Comp (pure (pure ($v))) <∗> Comp ff
≡ {-def. of pure for Comp f g -}

pure ($v) <∗> Comp ff

(8p)

6

Problem 2: (Type families)

i) Consider the following EDSL, which lets users perform basic arithmetic without having to
worry about dividing by zero:

data Exp a where
Int :: Int → Exp Int
Doub :: Double → Exp Double
Div :: Divide a ⇒ Exp a → Exp a → Exp a
Add :: Num a ⇒ Exp a → Exp a → Exp a

class (Eq a,Num a)⇒ Divide a where
divide :: a → a → a

instance Divide Int where
divide = div

instance Divide Double where
divide = (/)

eval :: Exp a → Maybe a
eval (Int x) = Just x
eval (Doub x) = Just x
eval (Div a b) = do

a ′ ← eval a
b′ ← eval b
if b′ ≡ 0
then Nothing
else Just (a ′ ‘divide‘ b′)

eval (Add a b) = do
a ′ ← eval a
b′ ← eval b
Just (a ′ + b′)

(Task) By using type families, you should modify the EDSL so that the Div constructor
can divide any combination of Ints and Doubles. For instance, it is possible to compute
Div (Int 10) (Doub 2.5) and Div (Doub 2) (Doub 2) in your language.

For the whole exercise, you can assume the function fromIntegral :: (Integral a,Num b)⇒ a →
b, which takes numbers with whole-number division and remainder operations (e.g., Integer
and Int), and transformed them into numbers with basic operations (e.g., Word , Integer , Int ,
Float , and Double). (7p)

Solution

data Exp a where
Int :: Int → Exp Int
Doub :: Double → Exp Double
Div :: Divide a b ⇒ Exp a → Exp b → Exp (DivRes a b)
Add :: Num a ⇒ Exp a → Exp a → Exp a

type family DivRes a b where

7

DivRes Double a = Double
DivRes a Double = Double
DivRes a a = a

class (Eq b,Num b)⇒ Divide a b where
divide :: a → b → DivRes a b

instance Divide Double Int where
divide a b = a / fromIntegral b

instance Divide Int Double where
divide a b = fromIntegral a / b

instance Divide Int Int where
divide a b = a ‘div ‘ b

instance Divide Double Double where
divide a b = a / b

ii) The following code implements a type family (Serialized) and a type class (Serialize) which in
combination are used for serializing data into tuples of words of a user-specified size. Observe
that the type family works on two types.

8

type family Serialized t a where
Serialized Word16 Int = (Word16 ,Word16)
Serialized Word16 Word = (Word16 ,Word16)
Serialized Word8 Int = (Word8 ,Word8 ,Word8 ,Word8)
Serialized Word8 Word = (Word8 ,Word8 ,Word8 ,Word8)

-- more cases (not relevant for the rest of the exercise)

class Serialize t a where
serialize :: a → Serialized t a

instance Serialize Word16 Int where
serialize i = (fromIntegral i , fromIntegral (i ‘shiftR‘ 16))

instance Serialize Word16 Word where
serialize w = (fromIntegral w , fromIntegral (w ‘shiftR‘ 16))

-- more instances (not relevant for the rest of the exercise)

Function shiftR shifts the first argument right by the specified number of bits.

The type family, type class and instances are all type-correct on their own. However, attempt-
ing to apply serialize to any value will cause a type error:

main = putStrLn ("High word: " ++ show hi)
where

lo, hi :: Word16
(lo, hi) = serialize (0xDEADBEEF :: Word)

This happens because serialize returns a type family application. In this case, the type of
serialize is of the form Word → Serialized t Word . This makes the type checker unable to
infer t , even though it is obvious that the t must be Word16 in this case.

(Task) Explain why it is in general impossible to infer a type t even if we know what the type
family application F t computes to. Think in the example above: why Haskell’s type system
does not choose t to be Word16 when it sees that (lo, hi) has type (Word16 ,Word16)? The
type error is as follows:

Couldn’t match expected type (Word16, Word16)

with actual type Serialized t0 Word

The type variable t0 is ambiguous

In the expression: serialize (3735928559 :: Word)

In a pattern binding: (lo, hi) = serialize (3735928559 :: Word)

Failed, modules loaded: none.

(3735928559 is 0xDEADBEEF in the message above.) You should also describe which addi-
tional properties a type family definition would need to make the example above to type check,
i.e. when Haskell sees Serialized t Word , it can infer that t must be Word16 . (7p)

Solution

9

t can not be inferred from F t because type families are not injective. Just like we can not
infer the value of x from f(x) without explicit knowledge of the inverse of f , we can not deduce
t from F t .

Type families would need injectivity to make the example type check. That is, the property
that a b <=> T a T b.

iii) To resolve problems like this, where the type checker does not have enough information to
figure out what we want, it is common to use proxy types:

data Proxy a = Proxy

Proxies allow us to pass a type directly to a function, without having to come up with a
concrete value of that type—we have the constructor Proxy ! One instance where this is useful
is when composing polymorphic functions, and we need to keep track of some intermediate
result.

The following example will produce a type error, since there is no way for the compiler to infer
the concrete return type of read , which makes impossible to choose a suitable parser from the
dictionary Read a. More concretely, let us assume the following functions and definitions.

read :: Read a ⇒ String → a
print :: Show a ⇒ a → IO ()

readAndPrint :: String → IO ()
readAndPrint = print ◦ read

We get the following type error:

No instance for (Read a0) arising from a use of read

The type variable a0 is ambiguous

In the second argument of (.), namely read

In the expression: print . read

In an equation for readAndPrint: readAndPrint = print . read

Failed, modules loaded: none.

By allowing the caller to explicitly provide a proxy with the return type of read , we can help
the compiler to select the appropriated parser for read .

read ′ :: Read a ⇒ Proxy a → String → a
read ′ p = read

readAndPrint ′ :: (Read a,Show a)⇒ Proxy a → String → IO ()
readAndPrint ′ p = print ◦ (read ′ p)

Observe that proxy p :: Proxy a above is not used in the body of read ′. It is there merely for
having an argument which involves the returning type a. By instantiating a in Proxy a, we
can indicate which parser must be used.

10

> readAndPrint’ (Proxy :: Proxy Int) "42"

42

> readAndPrint’ (Proxy :: Proxy Double) "1.42"

1.42

(Task) Use proxies to fix the serialize function from ii). Then, write an example demonstrating
how to use your fixed serialize. (6p)

Solution

class Serialize t a where
serialize :: Proxy t → a → Serialized t a

instance Serialize Word16 Int where
serialize i = (fromIntegral i , fromIntegral (a ‘shiftR‘ 16))

instance Serialize Word16 Word where
serialize w = (fromIntegral w , fromIntegral (a ‘shiftR‘ 16))

main = print hi
where (lo, hi) = serialize (Proxy :: Proxy Word16) (0 xDEADBEEF :: Word)

11

Problem 3: (EDSL) Information-flow control (IFC) is a promising technology to guarantee
confidentiality of data when manipulated by untrusted code, i.e. code written by someone else.

-- Security level for public data
data L

-- Security level for secret data
data H

-- allowed flows of information
class l ‘CanFlowTo‘ l ′ where

-- Public data can flow into public entities
instance L ‘CanFlowTo‘ L where

-- Public data can flow into secret entities
instance L ‘CanFlowTo‘ H where

-- Secret data can flow into secret entities
instance H ‘CanFlowTo‘ H where

Figure 1: Allowed flows of information

In IFC, data gets classified either as
public (low) or secret (high), where
public information can flow into secret
entities but not vice versa. We encode
the sensitivity of data as abstract data
types, and the allowed flows of informa-
tion in the type-class CanFlowTo – see
Figure 1.

To build secure programs which do
not leak secrets, we build a small EDSL
in Haskell with two core concepts: la-
beled values and secure computations.
Labeled values are simply data tagged
with a security level indicating its sen-
sitivity. For example, a weather re-
port is a public piece of data, so we
can model it as a public labeled string
weather report ::Labeled L String . Sim-
ilarly, a credit card number is sensitive, so we model it as a secret integer cc number ::
Labeled H Integer .

A secure computation is an entity of type MAC l a, which denotes a computation that handles
data at sensitivity level l and produces a result (of type a) of this level. In order to remain secure,
secure computations can only observe data that “can flow to” the computation (see primitive
unlabel below), and can only create labeled values provided that information from the computation
“can flow to” the newly created labeled value (see primitive label below). We describe the API for
the EDSL in Figure 2, and provide a shallow-embedded implementation for the API in Figure 3.

With our EDSL now, you can write functions which keep secrets! For instance, imagine a
function which takes the salary of a employee in a certain position (sensitive information1) and
determines if it is above the average.

isAbove :: Labeled H Salary → Labeled L Salary → MAC H Bool

Function isAbove takes the employee’s salary (see argument of type Labeled H Salary) and the
average (see argument of type Labeled L Salary) and returns a MAC H -computation indicating that
the resulting boolean is sensitive—after all, it depends on the employee’s salary! If the returning
computation were MAC L Bool , then isAbove will not type-check: it would be impossible to unwrap
the employee’s salary using unlabel .

i) (Task) Take the EDSL and create a monad transformer for it, which we call MACT .

data MACT l m a

The idea is that when applying MACT to a monad m, then we obtain a monad capable
to perform the effects of m as well as keeping sensitive information secret. For instance,
MACT l (State s) a is a secure state monad with state s.

1In Sweden, salaries are public information but that is not the case in other countries.

12

-- Types
newtype Labeled l a
newtype MAC l a

-- Labeled values
label :: (l ‘CanFlowTo‘ h)⇒ a → MAC l (Labeled h a)
unlabel :: (l ‘CanFlowTo‘ h)⇒ Labeled l a → MAC h a

-- MAC monad
return :: a → MAC l a
(>>=) :: MAC l a → (a → MAC l b)→ MAC l b

joinMAC :: (l ‘CanFlowTo‘ h)⇒ MAC h a → MAC l (Labeled h a)

-- Run function
runMAC :: MAC l a → a

Figure 2: EDSL API

-- Types
newtype Labeled l a = MkLabeled a

newtype MAC l a = MkMAC a

-- Labeled values
label = MkMAC ◦MkLabeled
unlabel (MkLabeled v) = MkMAC v

-- MAC operations
joinMAC (MkMAC t) = MkMAC (MkLabeled t)
runMAC (MkMAC a) = a

instance Monad (MAC l) where
return = MkMAC
MkMAC a >>= f = f a

Figure 3: Shallow-embedded implemention

13

Define an implementation for MACT l m a and give the type-signature and implementation
of the following operations on transformed monads.

return :: ...
(>>=) :: ...
t label :: ...
t unlabel :: ...
t joinMAC :: ...
t runMAC :: ...

Help: We provide the type-signature of t label and t runMAC .

t label :: (Monad m, l ‘CanFlowTo‘ h)⇒ a → MACT l m (Labeled h a)
t runMAC :: MACT l m a → m a

Observe that the type-signature looks almost similar to those in MAC where MACT is used
instead.

Hint: In the definition of (>>=), reuse as much as possible the monadic operators from monads
m and MAC .

(10p)

Solution:

data MACT l m a = MkMACT (MAC l (m a))

instance Monad m ⇒ Monad (MACT l m) where
return = MkMACT ◦ return ◦ return
(MkMACT mac)>>= f = MkMACT (mac >>= λma → return (ma >>= t runMAC ◦ f))

t label :: (Monad m,CanFlowTo l h)⇒ a → MACT l m (Labeled h a)
t label a = return (MkLabeled a)

t unlabel :: (Monad m,CanFlowTo l h)⇒ Labeled l a → MACT h m a
t unlabel (MkLabeled v) = return v

t joinMAC :: (Monad m,CanFlowTo l h)⇒ MACT h m a → MACT l m (Labeled h a)
t joinMAC (MkMACT (MkMAC ma)) = (MkMACT ◦ return) (ma >>= return ◦MkLabeled)

t runMAC :: MACT l m a → m a
t runMAC (MkMACT mac) = runMAC mac

ii) Assuming that m and MAC are monads, you need to prove that MACT l m a is also a
monad, i.e. you should show that your monad transformer generates monads! The monad laws
are shown in Figure 4. In the proofs, you are likely to write the monadic operators return
and (>>=). Since you would be dealing with more than one monad, it might get confusing
to determine which monad you are referring to. Therefore, you must indicate as a subindex
the name of the monad that operations refers to. For example, returnm, returnMAC , or
returnMACT refers to the return operation for monad m, MAC , and MACT , respectively.
Finally, if you need auxiliary properties, you should provide a proof for them, too!

a) Prove left identity. (2p)

14

b) Prove right identity. (2p)

c) Prove associativity. (6p)

Hint: You might need to prove an auxiliary property about t runMAC , >>=m, and>>=MACT.

Left identity:

-- Auxiliary property
t runMAC ◦ returnMACT ≡ returnm

(t runMAC ◦ returnMACT) x ≡
-- Composition of functions

t runMAC (returnMACT x) ≡
-- Definition of return

t runMAC ((MkMACT ◦ returnMAC ◦ returnm) x)) ≡
-- By composition of functions

t runMAC (MkMACT (returnMAC ◦ returnm) x) ≡
-- By definition of t runMAC

runMAC ((returnMAC ◦ returnm) x) ≡
-- By composition of functions

runMAC (returnMAC (returnm x)) ≡
-- Definition of return

runMAC (MkMAC (returnm x)) ≡
-- Definition of runMAC

returnm x

-- Left identity
tmac >>=MACT f ≡

-- By pattern matching tmac is of the form (MkMACT mac)
(MkMACT mac) >>=MACT f ≡

-- Def bind
MkMACT (mac >>=MAC λma → returnMAC (ma >>=m (t runMAC ◦ returnMACT))

-- By auxiliary property
MkMACT (mac >>=MAC λma → returnMAC (ma >>=m returnm))

-- Left identity of m
MkMACT (mac >>=MAC λma → returnMAC ma)

-- Eta-contraction
MkMACT (mac >>=MAC returnMAC)

-- Left identity MAC
MkMACT mac

-- By definition of tmac
tmac

Right identity:

-- Auxiliary property
MkMACT ◦MkMAC ◦ t runMAC ≡ id

15

-- Auxiliary property
MkMACT (MkMAC (t runMAC tmac)) ≡

-- By pattern matching, tmac is of the form MkMACT mac
MkMACT (MkMAC (t runMAC (MkACT mac))) ≡

-- Definition of t runMAC
MkMACT (MkMAC (runMAC mac)) ≡

-- By pattern matching mac is of the form MkMAC m
MkMACT (MkMAC (runMAC (MkMAC m))) ≡

-- By definition of runMAC
MkMACT (MkMAC m) ≡

-- By definition of mac
MkMACT mac ≡

-- By definition of tmac
tmac ≡

-- By definition of id
id tmac

-- Right identify
returnMACT x >>=MACT f ≡

-- By definition of return
(MkMACT ◦ returnMAC ◦ returnm) x >>=MACT f ≡

-- By function composition
MkMACT (returnMAC (returnm x)) >>=MACT f ≡

-- By definition of bind
MkMACT (returnMAC (returnm x) >>=MAC

λma → returnMAC (ma >>=m (t runMAC ◦ f))) ≡
-- By right identity of return in MAC

MkMACT (returnMAC (returnm x >>=m (t runMAC ◦ f))) ≡
-- By right identity of return in m

MkMACT (returnMAC ((t runMAC ◦ f) x)) ≡
-- By definition of return

MkMACT (MkMAC ((t runMAC ◦ f) x)) ≡
-- By function composition

MkMACT (MkMAC (t runMAC (f x))) ≡
-- By auxiliary property

MkMACT (MkMAC (t runMAC (f x))) ≡
--

f x

Associativity:

-- Auxiliary property
λx → t runMAC (f1 x >>=MACT f2) ≡ λx → (t runMAC ◦ f1) x >>=m (t runMAC ◦ f2)

-- Extensionality, we apply functions to an argument a and prove
t runMAC (f1 a >>=MACT f2) ≡

16

-- f1 a is of the form MkMACT mac
t runMAC (MkMACT mac >>=MACT f2) ≡

-- Definition of bind
t runMAC (MkMACT (mac >>=MAC λma → returnMAC

(ma >>=m (t runMAC ◦ f2)))) ≡
-- Definition of t runMAC

runMAC (mac >>=MAC λma → returnMAC

(ma >>=m (t runMAC ◦ f2))) ≡
-- By pattern matching of bind mac is of the form MkMAC m

runMAC (MkMAC m >>=MAC λma → returnMAC

(ma >>=m (t runMAC ◦ f2))) ≡
-- By definition of bind

runMAC (returnMAC (m >>=m (t runMAC ◦ f2))) ≡
-- Definition of return

runMAC (MkMAC (m >>=m (t runMAC ◦ f2))) ≡
-- By definition of runMAC

m >>=m (t runMAC ◦ f2) ≡
-- By definition of runMAC

(runMAC (MkMAC m)) >>=m (t runMAC ◦ f2) ≡
-- By definition of MkMAC m

runMAC mac >>=m (t runMAC ◦ f2) ≡
-- By definition of t runMAC

t runMAC (MkMACT mac) >>=m (t runMAC ◦ f2) ≡
-- By definition of MkMACT mac

t runMAC (f a) >>=m (t runMAC ◦ f2) ≡
-- By function composition

(t runMAC ◦ f) a >>=m (t runMAC ◦ f2)

tmac >>=MACT (λx → f1 x >>=MACT f2) ≡
-- By pattern matching, tmac is of the form MkMACT mac

(MkMACT mac) >>=MACT (λx → f1 x >>=MACT f2) ≡
-- By definition of bind

MkMACT (mac >>=MAC λma → returnMAC

(ma >>=m (t runMAC ◦ (λx → f1 x >>=MACT f2)))) ≡
-- By auxiliary property

MkMACT (mac >>=MAC λma →
returnMAC

(ma >>=m (λx → (t runMAC ◦ f1) x >>=m (t runMAC ◦ f2)))) ≡
-- By pattern matching, mac is of the form MkMAC m

MkMACT (MkMAC m >>=MAC λma →
returnMAC

(ma >>=m (λx → (t runMAC ◦ f1) x >>=m (t runMAC ◦ f2)))) ≡
-- By definition of bind

MkMACT (returnMAC (m >>=m (λx → (t runMAC ◦ f1) x >>=m (t runMAC ◦ f2)))) ≡
-- By associativity of m

17

MkMACT (returnMAC ((m >>=m (t runMAC ◦ f1)) >>=m (t runMAC ◦ f2))) ≡
-- Left identity of MAC

MkMACT (returnMAC (m >>=m (t runMAC ◦ f1))
>>=MAC λma → returnMAC (ma >>=m (t runMAC ◦ f2))) ≡

-- Definition of bind
(MkMACT (returnMAC (m >>=m (t runMAC ◦ f1))))

>>=MACT f2 ≡
-- By definition of bind

(MkMACT (MkMAC m >>=MAC λma → returnMAC (ma >>=m (t runMAC ◦ f1))))
>>=MACT f2 ≡

-- By definition of mac
(MkMACT (mac >>=MAC λma → returnMAC (ma >>=m (t runMAC ◦ f1))))

>>=MACT f2 ≡
-- Definition of bind

(MkMACT mac >>=MACT f1) >>=MACT f2 ≡
-- tmac is of the form MkMACT mac

(tmac >>=MACT f1) >>=MACT f2

18

Appendix

class Monad m a where
return :: a → m a
(>>=) :: m a → (a → m b)→ m b

Left Identity

return x >>= f ≡ f x
Right Identity

m >>= return ≡ m

Associativity (x does not appear in m2 and m3)

(m >>= k1)>>= k2 ≡ m >>= (λx → k1 x >>= k2)

Figure 4: Monads

Functor type-class

class Functor c where fmap :: (a → b)→ c a → c b
Identity

fmap id ≡ id where id = λx → x

Map fusion

fmap (f ◦ g) ≡ fmap f ◦ fmap g

Figure 5: Functors

Applicative type-class

class Applicative c where pure :: a → c a (<∗>) :: c (a → b)→ c a → c b

Identity

pure id <∗> vv ≡ vv where id = λx → x
Composition

pure (◦) <∗> ff <∗> gg <∗> zz ≡ ff <∗> (gg <∗> zz)

Homomorphism

pure f <∗> pure v ≡ pure (f v)
Interchange

ff <∗> pure v ≡ pure ($v) <∗> ff

Figure 6: Applicative functors

19

