Advanced Functional Programming TDA342/DIT260

Tuesday 14th March, 2017, Samhällsbyggnad, 8:30.
(including example solutions to programming problems)
Alejandro Russo (Anton Ekblad, tel. 0707579 070)

- The maximum amount of points you can score on the exam: 60 points. The grade for the exam is as follows:
Chalmers: 3: 24-35 points, 4: 36-47 points, 5: 48-60 points.
GU: Godkänd $24-47$ points, Väl godkänd $48-60$ points
PhD student: 36 points to pass.
- Results: within 21 days.
- Permitted materials (Hjälpmedel): Dictionary (Ordlista/ordbok).

You may bring up to two pages (on one A4 sheet of paper) of pre-written notes - a "summary sheet". These notes may be typed or handwritten. They may be from any source. If this summary sheet is brought to the exam it must also be handed in with the exam (so make a copy if you want to keep it).

- Notes:

- Read through the paper first and plan your time.
- Answers preferably in English, some assistants might not read Swedish.
- If a question does not give you all the details you need, you may make reasonable assumptions. Your assumptions must be clearly stated. If your solution only works under certain conditions, state them.
- Start each of the questions on a new page.
- The exact syntax of Haskell is not so important as long as the graders can understand the intended meaning. If you are unsure just put in an explanation of your notation.
- Hand in the summary sheet (if you brought one) with the exam solutions.
- As a recommendation, consider spending around 1 h for exercise $1,1.20 \mathrm{~h}$ for exercise 2 , and 2 hs for exercise 3 . However, this is only a recommendation.
- To see your exam: by appointment (send email to Alejandro Russo)

Problem 1: (Applicative Functors)

In the lectures, we saw an example of an applicative functor which was not a monad. The example consisted on the data type definition:
data Phantom o $a=$ Phantom o
It is called Phantom since it contains no value of type a-it is like an empty body, a spirit, a phantom.

We saw that we can define the instances Functor and Applicative as follows.

```
instance Functor (Phantom o) where
    fmap - (Phantom o) = Phantom o
instance Monoid o A Applicative (Phantom o) where
    pure _ = Phantom 1
```


In these definitions, we assume a monoid structure for elements of type o, i.e. it contains an identity element 1 and a associative binary operation (\cdot).

In the lectures, we showed that when o is of type Int, any implementation of bind, i.e.

$$
(\gg):: \text { Phantom Int } a \rightarrow(a \rightarrow \text { Phantom Int } b) \rightarrow \text { Phantom Int } b
$$

violates the left identity law.
i) (Task) Come up with a type o^{\prime} and an implementation of instance Monad (Phantom o o^{\prime}), where Phantom o^{\prime} is indeed a monad, i.e. it respects the monadic laws (see Figure 4). (4p)

Solution:

```
data Unit \(=\) Unit \(\quad-\) o'
instance Monoid Unit where
        \(1=\) Unit
    (•) Unit Unit \(=\) Unit
instance Monad (Phantom Unit) where
    return _ \(\quad=\) Phantom Unit
    Phantom Unit \(\gg \Sigma_{-}=\)Phantom Unit
    return \(a \gg k\)
\(\equiv\) Unit
\(\equiv k a\)
    \(m a \gg\) return
\(\equiv\) Unit
\(\equiv m a\)
    \(m a \gg k \gg l\)
\(\equiv\) Unit \(\gg=l\)
\(\equiv\) Unit
\(\equiv m a \gg(\lambda a \rightarrow k a \gg l)\)
```

ii) The composition of two functors f and g is defined by the following data type:

```
data Comp c d a = Comp (c (d a))
instance (Functor c, Functor d) => Functor (Comp c d) where
    fmap f (Comp cda) = Comp (fmap (fmap f) cda)
```

(Task) Show that Compfga is also a functor, so it fulfills the identity and map fusion laws (see
Figure 5). In other words, you will show that the composition of functors results in a functor. (8p)

```
            {-Identity -}
        id (Comp cda)
            {-by def. of id -}
= Comp cda
            {-by def. of id -}
\equivComp (id cda)
    {-by Identity on functor c - }
\equivComp (fmap id cda)
    {-id has type (d a) to (d a), so by Identity on functor d -}
\equivComp (fmap (fmap id) cda)
    {-By def. of fmap on Comp -}
\equivfmap id (Comp cda)
        {-Map fusion -}
    fmap (f\circg) (Comp cda)
\equiv{-by def. of fmap on Comp -}
    Comp (fmap (fmap (f\circg)) cda)
        {-By map fusion on d -}
\equivComp (fmap (fmap f\circfmap g)cda)
    {-By map fusion on c -}
=Comp ((fmap (fmap f)\circfmap (fmap g)) cda)
    {-By def. of (.) -}
\equivComp (fmap (fmap f) (fmap (fmap g) cda))
    {-By def. fmap on Comp -}
\equivfmap f (Comp (fmap (fmap g) cda))
    {-By def. of fmap on Comp -}
#fmap f (fmap g (Comp cda))
    {-By def. of (.) -}
\equiv(fmap f\circ fmap g)(Comp cda)
```

iii) (Task) Applicatives are closed under functor composition, too! Define the applicative instance for the composition of two applicatives.
instance (Applicative f, Applicative g) \Rightarrow Applicative (Comp $f g$) where

Solution:

```
pure a = Comp $ pure (pure a)
Comp fgf <*> Comp fga = Comp $ (<*>) <$> fgf <*> fga
```

Show that your definitions of pure and (<*>) satisfy the applicative laws (see Figure 6).
Solution: Identity

```
    pure id <*> Comp vv
\(\equiv\{\)-def. of pure for Comp fg-\}
    Comp (pure (pure id)) <*> Comp vv
\(\equiv\{\)-def. of (<*>) for Comp f \(g-\}\)
    Comp \(((\) pure \((<*>)<*>\) pure (pure id)) <*> vv)
\(\equiv\) \{-homomorphism for \(f\)-\}
    Comp (pure (pure id <*>) <*> vv)
\(\equiv\{\)-identity for \(g-\}\)
    Comp (pure id \(<*>v v\) )
\(\equiv\{\)-identity for \(f\)-\}
    Comp vv
```


Composition

```
    pure f<*> (pure g<*> x)
\equiv{-composition-}
    pure (o) <*> pure f <*> pure g<*> x
\equiv{-homomorphism -}
    pure ( }f\circ\mathrm{ ) <*> pure g<*> x
\equiv {-homomorphism-}
    pure (f\circg)<*> x
    pure f<*> (pure g<*> x<*> y)
\equiv{-composition-}
    pure (o) <*> pure f <*> (pure g<*> x) <*> y
\equiv {-homomorphism -}
    pure (f\circ)<<> (pure g<*> x)<*> y
\equiv{-lemma -}
    pure ((f\circ)\circg)<*> x<*> y
    pure (o) <*> Comp ff <*> Comp gg <*> Comp zz
\equiv{-def. of pure for Comp fg-}
    Comp (pure (pure (o))) <*> Comp ff <*> Comp gg <*> Comp zz
\equiv {-def. of (<*>) for Comp f g-}
    Comp (pure (<*>) <*> pure (pure (o)) <*> ff) <*> Comp gg <*> Comp zz
\equiv {-homomorphism for f-}
    Comp (pure (pure (o)<*>) <*> ff) <*> Comp gg <*> Comp zz
```

```
\equiv{-def. of (<*>) for Comp fg-}
    Comp (pure (<*>) <*> (pure (pure (o) <*>) <*> ff)<*> gg) <*> Comp zz
\equiv{-lemma for f-}
    Comp (pure ((<*>) ○ (pure (०)<*>))<*>ff <*> gg)<*> Compzz
\equiv{-def. of (<*>) for Comp f g-}
    Comp (pure (<*>) <*> (pure ((<*>) ) (pure (०)<*>))<*> ff <*> gg)<*> zz)
\equiv{-lemma for f-}
    Comp (pure (((<*>)०)\circ((<*>) ○ (pure (०) <*>))) <*> ff <*> gg<*> zz)
\equiv {-def. of (o) -}
    Comp (pure ( }\lambdaxyz->\mathrm{ pure (0)<*> x<*> y<*>z)<*> ff <*> gg<*>zz)
\equiv{-composition for g-}
    Comp (pure (\lambdax y z->x<*> (y<*>z))<*>ff<*> gg<*>zz)
\equiv {-def. of (o) and ($) -}
    Comp (pure (($(<*>))\circ ((0)\circ ((०)\circ(<*>)))) <*> ff <*> gg<*> zz)
\equiv{-lemma for f-}
    Comp (pure ($(<*>))<*> (pure ((0)\circ ((\circ)\circ(<*>)))<*>ff)<*> gg<*> zz)
\equiv{-interchange for f-}
    Comp (pure ((०) ○((०)०(<*>)))<*> ff <*> pure (<*>) <*> gg <*> zz)
\equiv {-lemma for f-}
    Comp (pure (o)<*> (pure ((०) ○(<*>))<*> ff) <*> pure (<*>)<*> gg<*> zz)
\equiv{-composition for f-}
    Comp (pure ((0)\circ (<*>))<*> ff <*> (pure (<*>)<*> gg)<*> zz)
\equiv{-lemma for f-}
    Comp (pure (o) <*> (pure (<*>) <*> ff) <*> (pure (<*>)<*> gg)<*> zz)
\equiv {-composition for f-}
    Comp (pure (<*>) <*> ff <*> (pure (<*>)<*> gg<*> zz))
\equiv{-def. of (<*>) for Comp fg-}
    Comp ff <*> Comp (pure (<*>) <*> gg<*> zz)
\equiv{-def. of pure for Compfg-}
    Comp ff <*> (Comp gg <*> Comp zz)
```


Homomorphism

```
    pure \(f<*>\) pure \(v\)
\(\equiv\{\)-def. of pure for \(\operatorname{Comp} f g-\}\)
    Comp (pure (pure f)) <*> Comp (pure (pure v))
\(\equiv\{\)-def. of \((<*>)\) for Comp f \(g-\}\)
    Comp \(((<*>)<\$>\) pure (pure f) \(<*>\) pure (pure v))
\(\equiv\{\)-homomorphism for \(f-\}\)
    Comp ( pure \(f<*>\) ) < \(\gg\) pure (pure v))
\(\equiv\{\)-homomorphism for \(f-\}\)
    Comp (pure (pure \(f<*>\) pure \(v\) ))
\(\equiv\{\)-homomorphism for \(g-\}\)
    Comp (pure (pure ( \(f\) v)))
\(\equiv\{\)-def. of pure for Comp \(f g-\}\)
    pure ( \(f v\) )
```


Interchange

```
    Comp ff <*> pure v
\(\equiv\{\)-def. of pure for Comp f \(g-\}\)
    Comp ff <*> Comp (pure (pure v))
\(\equiv\{\)-def. of \((<*>)\) for Comp f \(g-\}\)
    Comp \(((<*>)<\$>\) ff <*> pure (pure v))
\(\equiv\{\)-interchange for \(f-\}\)
    Comp \(((\$\) pure \(v)\langle \$\rangle((<*>)\langle \$>f))\)
\(\equiv\) \{-composition for \(f\)-\}
    Comp \(((\circ)\langle \$\rangle(\$\) pure \(v)<\$\rangle(<*>)<\$>f f)\)
\(\equiv\{\)-homomorphism for \(f-\}\)
    Comp ( \(<*>\) pure \(v)<\$>f f)\)
\(\equiv\{\)-interchange for \(g-\}\)
    Comp ((pure (\$v) <*>) <\$>ff)
\(\equiv\) \{-homomorphism for \(f\)-\}
    Comp \(((<*>)<\$>\) pure (pure (\$v)) <*> ff)
\(\equiv\{\)-def. of \((\langle *\rangle)\) for Comp \(f g-\}\)
    Comp (pure (pure (\$v))) <*> Comp ff
\(\equiv\{\)-def. of pure for Comp fg-\}
    pure (\$v) <*> Comp ff
```


Problem 2: (Type families)

i) Consider the following EDSL, which lets users perform basic arithmetic without having to worry about dividing by zero:

```
data Exp a where
    Int :: Int \(\quad \rightarrow\) Exp Int
    Doub :: Double \(\rightarrow\) Exp Double
    Div :: Divide \(a \Rightarrow\) Exp \(a \rightarrow \operatorname{Exp} a \rightarrow \operatorname{Exp} a\)
    Add :: Num \(a \Rightarrow \operatorname{Exp} a \rightarrow \operatorname{Exp} a \rightarrow \operatorname{Exp} a\)
class \((E q a, N u m a) \Rightarrow\) Divide \(a\) where
    divide :: \(a \rightarrow a \rightarrow a\)
instance Divide Int where
    divide \(=\) div
instance Divide Double where
    divide \(=(/)\)
eval :: Exp \(a \rightarrow\) Maybe \(a\)
eval (Int \(x)=\) Just \(x\)
eval \((\) Doub \(x)=\) Just \(x\)
eval (Div ab) \(=\) do
    \(a^{\prime} \leftarrow\) eval \(a\)
    \(b^{\prime} \leftarrow\) eval \(b\)
    if \(b^{\prime} \equiv 0\)
        then Nothing
        else Just ( \(a^{\prime}\) ‘divide \({ }^{\text {b }} b^{\prime}\) )
eval \((\) Add a b) \(=\) do
    \(a^{\prime} \leftarrow\) eval \(a\)
    \(b^{\prime} \leftarrow\) eval \(b\)
    Just \(\left(a^{\prime}+b^{\prime}\right)\)
```

(Task) By using type families, you should modify the EDSL so that the Div constructor can divide any combination of Ints and Doubles. For instance, it is possible to compute Div (Int 10) (Doub 2.5) and Div (Doub 2) (Doub 2) in your language.
For the whole exercise, you can assume the function fromIntegral :: (Integral a, Num b) $\Rightarrow a \rightarrow$ b, which takes numbers with whole-number division and remainder operations (e.g., Integer and Int), and transformed them into numbers with basic operations (e.g., Word, Integer, Int, Float, and Double).

Solution

```
data Exp a where
    Int :: Int \(\rightarrow\) Exp Int
    Doub :: Double \(\rightarrow\) Exp Double
    Div :: Divide \(a b \Rightarrow \operatorname{Exp} a \rightarrow \operatorname{Exp} b \rightarrow \operatorname{Exp}(\) DivRes \(a b)\)
    Add :: Num \(a \quad \Rightarrow\) Exp \(a \rightarrow \operatorname{Exp} a \rightarrow \operatorname{Exp} a\)
type family DivRes a \(b\) where
```

$$
\begin{aligned}
& \text { DivRes Double } a=\text { Double } \\
& \text { DivRes a Double }=\text { Double } \\
& \text { DivRes a } a \quad=a \\
& \text { class }(\text { Eq } b, \text { Num } b) \Rightarrow \text { Divide a } b \text { where } \\
& \text { divide }:: ~ a \rightarrow b \rightarrow \text { DivRes a } b \\
& \text { instance Divide Double Int where } \\
& \text { divide a } b=a / \text { fromIntegral } b \\
& \text { instance Divide Int Double where } \\
& \text { divide a } b=\text { fromIntegral } a / b \\
& \text { instance Divide Int Int where } \\
& \text { divide } a b=a \text { 'div‘ } b \\
& \text { instance Divide Double Double where } \\
& \text { divide } a b=a / b
\end{aligned}
$$

ii) The following code implements a type family (Serialized) and a type class (Serialize) which in combination are used for serializing data into tuples of words of a user-specified size. Observe that the type family works on two types.
type family Serialized $t a$ where
Serialized Word16 Int $=($ Word16, Word16 $)$
Serialized Word16 Word $=($ Word16, Word16 $)$
Serialized Word8 Int $=($ Word8, Word8, Word8, Word8 $)$
Serialized Word8 Word $=($ Word8, Word8, Word8, Word8 $)$
-- more cases (not relevant for the rest of the exercise)
class Serialize $t a$ where
serialize $:: a \rightarrow$ Serialized $t a$
instance Serialize Word16 Int where
serialize $i=\left(\right.$ fromIntegral i, fromIntegral ($i^{`}$ shift $\left.{ }^{`} 16\right)$)
instance Serialize Word16 Word where
serialize $w=($ fromIntegral w, fromIntegral (w ‘shiftR‘ 16))
-- more instances (not relevant for the rest of the exercise)
Function shiftR shifts the first argument right by the specified number of bits.
The type family, type class and instances are all type-correct on their own. However, attempting to apply serialize to any value will cause a type error:

```
main = putStrLn ("High word: " + show hi)
    where
        lo, hi :: Word16
        \((l o, h i)=\) serialize \((0 x D E A D B E E F::\) Word \()\)
```

This happens because serialize returns a type family application. In this case, the type of serialize is of the form Word \rightarrow Serialized t Word. This makes the type checker unable to infer t, even though it is obvious that the t must be Word16 in this case.
(Task) Explain why it is in general impossible to infer a type t even if we know what the type family application $F t$ computes to. Think in the example above: why Haskell's type system does not choose t to be Word16 when it sees that (lo,hi) has type (Word16, Word16)? The type error is as follows:

```
Couldn't match expected type (Word16, Word16)
    with actual type Serialized t0 Word
    The type variable t0 is ambiguous
    In the expression: serialize (3735928559 :: Word)
    In a pattern binding: (lo, hi) = serialize (3735928559 :: Word)
Failed, modules loaded: none.
```

(3735928559 is $0 x D E A D B E E F$ in the message above.) You should also describe which additional properties a type family definition would need to make the example above to type check, i.e. when Haskell sees Serialized t Word, it can infer that t must be Word16.

Solution

t can not be inferred from $F t$ because type families are not injective. Just like we can not infer the value of x from $f(x)$ without explicit knowledge of the inverse of f, we can not deduce t from $F t$.

Type families would need injectivity to make the example type check. That is, the property that $a b<=>T a T b$.
iii) To resolve problems like this, where the type checker does not have enough information to figure out what we want, it is common to use proxy types:

```
data Proxy a = Proxy
```

Proxies allow us to pass a type directly to a function, without having to come up with a concrete value of that type - we have the constructor Proxy! One instance where this is useful is when composing polymorphic functions, and we need to keep track of some intermediate result.

The following example will produce a type error, since there is no way for the compiler to infer the concrete return type of read, which makes impossible to choose a suitable parser from the dictionary Read a. More concretely, let us assume the following functions and definitions.

$$
\begin{aligned}
& \text { read }:: \text { Read } a \Rightarrow \text { String } \rightarrow a \\
& \text { print }:: \text { Show } a \Rightarrow a \rightarrow I O() \\
& \text { readAndPrint }:: \text { String } \rightarrow I O() \\
& \text { readAndPrint }=\text { print } \circ \text { read }
\end{aligned}
$$

We get the following type error:

```
No instance for (Read a0) arising from a use of read
    The type variable a0 is ambiguous
        In the second argument of (.), namely read
    In the expression: print . read
    In an equation for readAndPrint: readAndPrint = print . read
Failed, modules loaded: none.
```

By allowing the caller to explicitly provide a proxy with the return type of read, we can help the compiler to select the appropriated parser for read.

$$
\begin{aligned}
& \text { read }^{\prime}:: \text { Read } a \Rightarrow \text { Proxy } a \rightarrow \text { String } \rightarrow a \\
& \text { read }^{\prime} p=\text { read } \\
& \text { readAndPrint }::(\text { Read } a, \text { Show } a) \Rightarrow \text { Proxy } a \rightarrow \text { String } \rightarrow I O() \\
& \text { readAndPrint } p=\text { print } \circ\left(\text { read }^{\prime} p\right)
\end{aligned}
$$

Observe that proxy p :: Proxy a above is not used in the body of read ${ }^{\prime}$. It is there merely for having an argument which involves the returning type a. By instantiating a in Proxy a, we can indicate which parser must be used.

```
> readAndPrint' (Proxy :: Proxy Int) "42"
4 2
> readAndPrint' (Proxy :: Proxy Double) "1.42"
1.42
```

(Task) Use proxies to fix the serialize function from ii). Then, write an example demonstrating how to use your fixed serialize.

Solution

```
class Serialize \(t a\) where
    serialize :: Proxy \(t \rightarrow a \rightarrow\) Serialized \(t\) a
instance Serialize Word16 Int where
    serialize _ \(i=\left(\right.\) fromIntegral \(i\), fromIntegral ( \(\left.a^{\text {‘shiftR‘}} 16\right)\) )
instance Serialize Word16 Word where
    serialize \(-w=\left(\right.\) fromIntegral \(w\), fromIntegral ( \(a^{‘}\) 'shiftR‘ 16) \()\)
main \(=\) print hi
    where \((l o, h i)=\) serialize (Proxy :: Proxy Word16) \((0\) xDEADBEEF \(::\) Word \()\)
```

Problem 3: (EDSL) Information-flow control (IFC) is a promising technology to guarantee confidentiality of data when manipulated by untrusted code, i.e. code written by someone else. In IFC, data gets classified either as public (low) or secret (high), where public information can flow into secret entities but not vice versa. We encode the sensitivity of data as abstract data types, and the allowed flows of information in the type-class CanFlowTo - see Figure 1.

To build secure programs which do not leak secrets, we build a small EDSL in Haskell with two core concepts: labeled values and secure computations. Labeled values are simply data tagged with a security level indicating its sensitivity. For example, a weather report is a public piece of data, so we can model it as a public labeled string weather_report :: Labeled L String. Sim-

-- Security level for public data
data L
-- Security level for secret data
data H
-- allowed flows of information
class l ' CanFlowTo' l^{\prime} where
-- Public data can flow into public entities
instance L 'CanFlowTo' L where
-- Public data can flow into secret entities
instance L 'CanFlowTo' H where
-- Secret data can flow into secret entities
instance $H^{~ ' C a n F l o w T o ' ~} H$ where

Figure 1: Allowed flows of information ilarly, a credit card number is sensitive, so we model it as a secret integer cc_number :: Labeled H Integer.

A secure computation is an entity of type MACla, which denotes a computation that handles data at sensitivity level l and produces a result (of type a) of this level. In order to remain secure, secure computations can only observe data that "can flow to" the computation (see primitive unlabel below), and can only create labeled values provided that information from the computation "can flow to" the newly created labeled value (see primitive label below). We describe the API for the EDSL in Figure 2, and provide a shallow-embedded implementation for the API in Figure 3.

With our EDSL now, you can write functions which keep secrets! For instance, imagine a function which takes the salary of a employee in a certain position (sensitive information ${ }^{1}$) and determines if it is above the average.

$$
\text { isAbove :: Labeled H Salary } \rightarrow \text { Labeled L Salary } \rightarrow \text { MAC H Bool }
$$

Function isAbove takes the employee's salary (see argument of type Labeled H Salary) and the average (see argument of type Labeled L Salary) and returns a MAC H-computation indicating that the resulting boolean is sensitive - after all, it depends on the employee's salary! If the returning computation were MAC L Bool, then isAbove will not type-check: it would be impossible to unwrap the employee's salary using unlabel.
i) (Task) Take the EDSL and create a monad transformer for it, which we call MACT.

```
data MACT l m a
```

The idea is that when applying $M A C T$ to a monad m, then we obtain a monad capable to perform the effects of m as well as keeping sensitive information secret. For instance, $M A C T l($ State $s) a$ is a secure state monad with state s.

[^0]-- Types
newtype Labeled la
newtype MAC la
-- Labeled values
label $\quad::\left(l^{\prime}\right.$ CanFlowTo‘ $\left.h\right) \Rightarrow a \rightarrow$ MAC $l($ Labeled $h a)$
unlabel $::(l$ 'CanFlowTo' $h) \Rightarrow$ Labeled $l a \rightarrow$ MAC ha
-- MAC monad
return $\quad:: a \rightarrow$ MAC l a
$(\gg) \quad:: M A C l a \rightarrow(a \rightarrow$ MAC l $b) \rightarrow$ MAC lb
joinMAC :: (l'CanFlowTo‘ $h) \Rightarrow$ MAC $h a \rightarrow$ MAC $l($ Labeled $h a)$
-- Run function
runMAC $:: M A C l a \rightarrow a$

Figure 2: EDSL API
-- Types
newtype Labeled $l a=$ MkLabeled a
newtype MAC la = MkMAC a
-- Labeled values
label $\quad=$ MkMAC \circ MkLabeled
unlabel (MkLabeled $v)=$ MkMAC v
-- MAC operations
joinMAC $($ MkMAC $t)=$ MkMAC $($ MkLabeled $t)$
runMAC $($ MkMAC $a)=a$
instance Monad (MAC l) where
return $=$ MkMAC
MkMAC $a \gg f=f a$

Figure 3: Shallow-embedded implemention

Define an implementation for MACT $l m a$ and give the type-signature and implementation of the following operations on transformed monads.

```
return :: ...
(>>) :: ...
t_label :: ...
t_unlabel :: ...
t_joinMAC :: ...
t_runMAC :: ..
```

Help: We provide the type-signature of $t_{-} l a b e l$ and $t_{-} r u n M A C$.

```
t_label \(\quad::\left(\right.\) Monad \(m, l^{\prime}\) CanFlowTo' \(\left.h\right) \Rightarrow a \rightarrow\) MACT l m (Labeled \(\left.h a\right)\)
t_runMAC :: MACT l ma ma
```

Observe that the type-signature looks almost similar to those in $M A C$ where $M A C T$ is used instead.

Hint: In the definition of (\gg), reuse as much as possible the monadic operators from monads m and $M A C$.

Solution:

```
data MACT \(l m a=\operatorname{MkMACT}(M A C l(m a))\)
instance Monad \(m \Rightarrow \operatorname{Monad}(M A C T l m)\) where
    return \(\quad=M k M A C T \circ\) return \(\circ\) return
    \((\) MkMACT mac \() \gg=f=\operatorname{MkMACT}\left(m a c \gg=\lambda m a \rightarrow \operatorname{return}\left(m a \gg t_{-}\right.\right.\)runMAC \(\left.\left.\circ f\right)\right)\)
t_label :: \(\quad(\) Monad \(m\), CanFlowTo \(l h) \Rightarrow a \rightarrow\) MACT l m (Labeled \(h a)\)
\(t_{-}\)label \(a=\) return \((\) MkLabeled \(a)\)
t_unlabel \(::(\) Monad \(m\), CanFlowTo l \(h\) ) \(\Rightarrow\) Labeled la MACT h ma
t_unlabel (MkLabeled \(v)=\) return \(v\)
t_joinMAC :: (Monad m, CanFlowTo l h) \(\Rightarrow\) MACT h ma MACT l m (Labeled ha)
\(t\) _joinMAC \((M k M A C T(M k M A C m a))=(M k M A C T \circ\) return \()(m a \gg\) return \(\circ\) MkLabeled \()\)
t_runMAC :: MACT l ma \(\rightarrow\) ma
\(t_{-}\)runMAC \((\)MkMACT mac \()=\)runMAC mac
```

ii) Assuming that m and $M A C$ are monads, you need to prove that MACT $l m a$ is also a monad, i.e. you should show that your monad transformer generates monads! The monad laws are shown in Figure 4. In the proofs, you are likely to write the monadic operators return and (\gg). Since you would be dealing with more than one monad, it might get confusing to determine which monad you are referring to. Therefore, you must indicate as a subindex the name of the monad that operations refers to. For example, return , return $_{M A C}$, or return $_{M A C T}$ refers to the return operation for monad $m, M A C$, and $M A C T$, respectively. Finally, if you need auxiliary properties, you should provide a proof for them, too!
a) Prove left identity.
b) Prove right identity.
c) Prove associativity.

Hint: You might need to prove an auxiliary property about t_{-}runMAC, $\gg{ }_{m}$, and $\gg=_{M A C T}$.

Left identity:

-- Auxiliary property
$t _r u n M A C \circ$ return $_{M A C T} \equiv$ return $_{m}$
$\left(t_{-}\right.$runMAC $\left.\circ \operatorname{return}_{M A C T}\right) x \equiv$
-- Composition of functions
t_runMAC $\left(\right.$ return $\left._{M A C T} x\right) \equiv$
-- Definition of return
t_{-}runMAC $\left(\left(\right.\right.$MkMACT $\left.\left.\left.\circ \operatorname{return}_{M A C} \circ \operatorname{return}_{m}\right) x\right)\right) \equiv$
-- By composition of functions
$t_{_}$runMAC $\left(M k M A C T\left(\right.\right.$ return $_{M A C} \circ$ return $\left.\left._{m}\right) x\right) \equiv$
-- By definition of t_runMAC
runMAC $\left(\right.$ return $_{M A C} \circ$ return $\left.\left._{m}\right) x\right) \quad \equiv$
-- By composition of functions
runMAC $\left(\right.$ return $_{M A C}\left(\right.$ return $\left.\left._{m} x\right)\right) \quad \equiv$
-- Definition of return
runMAC $\left(\right.$ MkMAC $\left(\right.$ return $\left.\left._{m} x\right)\right) \quad \equiv$
-- Definition of runMAC
return $_{m} x$
-- Left identity
tmac $\gg{ }_{M A C T} f \equiv$
-- By pattern matching tmac is of the form (MkMACT mac)
(MkMACT mac) > $=_{\text {MACT }} f \equiv$
-- Def bind
$\operatorname{MkMACT}\left(m a c \gg{ }_{M A C} \lambda m a \rightarrow \operatorname{return}_{M A C}\left(m a>=_{m}\left(t_{-} r u n M A C \circ \operatorname{return}_{M A C T}\right)\right)\right.$
-- By auxiliary property
$\operatorname{MkMACT}\left(\operatorname{mac} \gg{ }_{M A C} \lambda m a \rightarrow \operatorname{return}_{M A C}\left(m a>=_{m}\right.\right.$ return $\left.\left._{m}\right)\right)$
-- Left identity of m
$\operatorname{MkMACT}\left(\right.$ mac $\left.\gg{ }_{M A C} \lambda m a \rightarrow \operatorname{return}_{M A C} m a\right)$
-- Eta-contraction
MkMACT (mac $\gg{ }_{M A C}$ return $_{M A C}$)
-- Left identity MAC
MkMACT mac
-- By definition of tmac
tmac

Right identity:

-- Auxiliary property
$M k M A C T \circ M k M A C \circ t _r u n M A C \equiv i d$
-- Auxiliary property
MkMACT (MkMAC (t_runMAC tmac) $) \equiv$
-- By pattern matching, tmac is of the form MkMACT mac
$\operatorname{MkMACT}\left(\right.$ MkMAC $\left(t_{-} r u n M A C(M k A C T\right.$ mac $\left.\left.)\right)\right) \equiv$
-- Definition of t_runMAC
MkMACT (MkMAC (runMAC mac)) \equiv
-- By pattern matching mac is of the form MkMAC m
MkMACT (MkMAC (runMAC (MkMAC m)) $) \equiv$
-- By definition of runMAC
MkMACT (MkMAC m) \equiv
-- By definition of mac
MkMACT mac \equiv
-- By definition of tmac
$t m a c \equiv$
-- By definition of id id tmac
-- Right identify
return $_{M A C T} x>=_{M A C T} f \equiv$
-- By definition of return
$\left(M k M A C T \circ \operatorname{return}_{M A C} \circ\right.$ return $\left._{m}\right) x \gg{ }_{M A C T} f \equiv$
-- By function composition
MkMACT $\left(\right.$ return $_{M A C}\left(\right.$ return $\left.\left._{m} x\right)\right) \gg{ }_{M A C T} f \equiv$
-- By definition of bind
MkMACT return $_{M A C}\left(\right.$ return $\left._{m} x\right)>{ }_{M A C}$
$\left.\lambda m a \rightarrow \operatorname{return}_{M A C}\left(m a>=_{m}\left(t _r u n M A C \circ f\right)\right)\right) \quad \equiv$
-- By right identity of return in MAC
$\operatorname{MkMACT}\left(\right.$ return $_{M A C}\left(\right.$ return $_{m} x \gg=_{m}\left(t_{-}\right.$runMAC $\left.\left.\left.\circ f\right)\right)\right) \equiv$
-- By right identity of return in m
$\operatorname{MkMACT}\left(\right.$ return $_{M A C}\left(\left(t_{-}\right.\right.$runMAC○f) $\left.\left.x\right)\right) \equiv$
-- By definition of return
$\operatorname{MkMACT}\left(\right.$ MkMAC $\left.\left(\left(t_{-} r u n M A C \circ f\right) x\right)\right) \equiv$
-- By function composition
$\operatorname{MkMACT}\left(\right.$ MkMAC $\left.\left(t_{-} r u n M A C(f x)\right)\right) \equiv$
-- By auxiliary property
$\operatorname{MkMACT}\left(\right.$ MkMAC $\left.\left(t_{-} r u n M A C(f x)\right)\right) \equiv$
$f \stackrel{--}{x}$

Associativity:

-- Auxiliary property
$\lambda x \rightarrow t _r u n M A C\left(f_{1} x \gg \sum_{M A C T} f_{2}\right) \equiv \lambda x \rightarrow\left(t _r u n M A C \circ f_{1}\right) x \gg_{m}\left(t_{-} r u n M A C \circ f_{2}\right)$
-- Extensionality, we apply functions to an argument a and prove
t_{-}runMAC $\left(f_{1} a \gg \sum_{M A C T} f_{2}\right) \equiv$
-- f 1 a is of the form MkMACT mac
t_runMAC $\left(\right.$ MkMACT mac $\left.\gg{ }_{M A C T} f_{2}\right) \equiv$
-- Definition of bind
t_runMAC (MkMACT (mac >> ${ }_{M A C} \lambda m a \rightarrow$ return $_{M A C}$
$\left.\left.\left(m a \gg{ }_{m}\left(t _r u n M A C \circ f_{2}\right)\right)\right)\right) \equiv$
-- Definition of t_runMAC
runMAC $\left(\right.$ mac $\gg{ }_{M A C} \lambda m a \rightarrow$ return $_{M A C}$
$\left.\left(m a \gg{ }_{m}\left(t _r u n M A C \circ f_{2}\right)\right)\right) \equiv$
-- By pattern matching of bind mac is of the form MkMAC m
runMAC $\left(\right.$ MkMAC $m \gg$ MAC $\lambda m a \rightarrow$ return $_{\text {MAC }}$

$$
\left.\left(m a \gg \sum_{m}\left(t_{-} r u n M A C \circ f_{2}\right)\right)\right) \equiv
$$

-- By definition of bind
runMAC $\left(\right.$ return $\left._{M A C}\left(m \gg \sum_{m}\left(t _r u n M A C \circ f_{2}\right)\right)\right) \equiv$
-- Definition of return
$r u n M A C\left(\operatorname{MkMAC}\left(m \gg{ }_{m}\left(t _r u n M A C \circ f_{2}\right)\right)\right) \equiv$
-- By definition of runMAC
$m \gg=_{m}\left(t_{-} r u n M A C \circ f_{2}\right) \equiv$
-- By definition of runMAC
$($ runMAC $($ MkMAC $m))>\sum_{m}\left(t_{-} r u n M A C \circ f_{2}\right) \equiv$
-- By definition of MkMAC m
runMAC mac $\gg{ }_{m}\left(t _r u n M A C \circ f_{2}\right) \equiv$
-- By definition of t_runMAC
$t _r u n M A C(M k M A C T$ mac $) \gg=_{m}\left(t _r u n M A C \circ f_{2}\right) \equiv$
-- By definition of MkMACT mac
t_{-}runMAC $(f a) \gg m_{m}\left(t _r u n M A C \circ f_{2}\right) \equiv$
-- By function composition
$\left(t_{-} r u n M A C \circ f\right) a \gg m_{m}\left(t_{-} r u n M A C \circ f_{2}\right)$
tmac $\gg \operatorname{MACT}\left(\lambda x \rightarrow f_{1} x \gg{ }_{M A C T} f_{2}\right) \equiv$
-- By pattern matching, tmac is of the form MkMACT mac
$($ MkMACT mac $)>\sum_{M A C T}\left(\lambda x \rightarrow f_{1} x>=_{M A C T} f_{2}\right) \equiv$
-- By definition of bind
MkMACT $\left(\right.$ mac $\gg{ }_{M A C} \lambda m a \rightarrow$ return $_{M A C}$
$\left.\left(m a \gg m_{m}\left(t_{-} r u n M A C \circ\left(\lambda x \rightarrow f_{1} x>=_{M A C T} f_{2}\right)\right)\right)\right) \equiv$
-- By auxiliary property
MkMACT $\left(\right.$ mac $\gg{ }_{M A C} \lambda m a \rightarrow$
return $_{M A C}$
$\left.\left(m a \gg{ }_{m}\left(\lambda x \rightarrow\left(t_{-} r u n M A C \circ f_{1}\right) x \gg \sum_{m}\left(t_{-} r u n M A C \circ f_{2}\right)\right)\right)\right) \equiv$
-- By pattern matching, mac is of the form MkMAC m
MkMACT (MkMAC $m \gg{ }_{M A C} \lambda m a \rightarrow$

$$
\text { return }_{M A C}
$$

$\left.\left(m a \gg{ }_{m}\left(\lambda x \rightarrow\left(t_{-} r u n M A C \circ f_{1}\right) x \gg E_{m}\left(t_{-} r u n M A C \circ f_{2}\right)\right)\right)\right) \quad \equiv$
-- By definition of bind
$\operatorname{MkMACT}\left(\right.$ return $\left._{M A C}\left(m \gg m_{m}\left(\lambda x \rightarrow\left(t_{-} r u n M A C \circ f_{1}\right) x \gg m_{m}\left(t_{-} r u n M A C \circ f_{2}\right)\right)\right)\right) \equiv$
-- By associativity of m
$\operatorname{MkMACT}\left(\right.$ return $\left._{M A C}\left(\left(m \gg m_{m}\left(t_{-} r u n M A C \circ f_{1}\right)\right)>\sum_{m}\left(t_{-} r u n M A C \circ f_{2}\right)\right)\right) \equiv$
-- Left identity of MAC
MkMACT $\left(\right.$ return $_{M A C}\left(m \gg{ }_{m}\left(t _r u n M A C \circ f_{1}\right)\right)$
$\gg{ }_{M A C} \lambda m a \rightarrow$ return $\left._{M A C}\left(m a>=_{m}\left(t_{-} r u n M A C \circ f_{2}\right)\right)\right) \equiv$
-- Definition of bind
$\left(\operatorname{MkMACT}\left(\right.\right.$ return $\left.\left._{M A C}\left(m \gg{ }_{m}\left(t_{-} r u n M A C \circ f_{1}\right)\right)\right)\right)$ $>{ }_{M A C T} f_{2} \equiv$
-- By definition of bind
$\left(\operatorname{MkMACT}\left(\operatorname{MkMAC} m>\sum_{M A C} \lambda m a \rightarrow \operatorname{return}_{M A C}\left(m a>\sum_{m}\left(t _r u n M A C \circ f_{1}\right)\right)\right)\right)$ $\gg{ }_{M A C T} f_{2} \equiv$
-- By definition of mac
$\left(\operatorname{MkMACT}\left(m a c \gg{ }_{M A C} \lambda m a \rightarrow\right.\right.$ return $\left.\left._{M A C}\left(m a \gg{ }_{m}\left(t_{-} r u n M A C \circ f_{1}\right)\right)\right)\right)$ $\geqslant=_{M A C T} f_{2} \equiv$
-- Definition of bind
$\left(\right.$ MkMACT mac $\left.>=_{M A C T} f_{1}\right) \gg=_{M A C T} f_{2} \equiv$
-- tmac is of the form MkMACT mac
$\left(\right.$ tmac $\left.\gg{ }_{M A C T} f_{1}\right) \gg=_{M A C T} f_{2}$

Appendix

$$
\begin{aligned}
& \text { class Monad ma where } \\
& \text { return }:: a \rightarrow m a \\
& (\gg):: m a \rightarrow(a \rightarrow m b) \rightarrow m b
\end{aligned}
$$

Left Identity return $x \gg f \equiv f x$

Right Identity
$m \gg$ return $\equiv m$

Associativity (x DOES NOT APPEAR in m_{2} AND m_{3}) $\left(m \gg k_{1}\right) \gg k_{2} \equiv m \gg=\left(\lambda x \rightarrow k_{1} x \gg k_{2}\right)$

Figure 4: Monads

FUNCTOR TYPE-CLASS	IDENTITY
class Functor c where $f m a p::(a \rightarrow b) \rightarrow c a \rightarrow c b$	fmap id $\equiv i d$ where $i d=\lambda x \rightarrow x$

MAP FUSION
fmap $(f \circ g) \equiv f m a p f \circ f m a p g$

Figure 5: Functors

Applicative type-Class
class Applicative c where pure $:: a \rightarrow c a \quad(<*>):: c(a \rightarrow b) \rightarrow c a \rightarrow c b$

IDENTITY
pure $i d\langle *\rangle v v \equiv v v$ where $i d=\lambda x \rightarrow x$
Homomorphism
pure $f<*>$ pure $v \equiv$ pure $(f v)$

Composition
pure $(\circ)<*>f f<*>g g<*>z z \equiv f f<*>(g g<*>z z)$

INTERCHANGE
ff <*> pure $v \equiv$ pure $(\$ v)<*>f f$

Figure 6: Applicative functors

[^0]: ${ }^{1}$ In Sweden, salaries are public information but that is not the case in other countries.

