
Chalmers | Göteborgs Universitet
Alejandro Russo, Computer Science and Engineering

Advanced Functional Programming TDA342/DIT260

Tuesday, March 15, 2016, Hörsalsvägen (yellow brick building), 8:30-12:30.

(including example solutions to programming problems)

Alejandro Russo, tel. 031 772 6156

• The maximum amount of points you can score on the exam: 60 points. The grade for the
exam is as follows:

Chalmers: 3: 24 - 35 points, 4: 36 - 47 points, 5: 48 - 60 points.
GU: Godkänd 24-47 points, Väl godkänd 48-60 points
PhD student: 36 points to pass.

• Results: within 21 days.

• Permitted materials (Hjälpmedel): Dictionary (Ordlista/ordbok).

You may bring up to two pages (on one A4 sheet of paper) of pre-written notes – a “summary
sheet”. These notes may be typed or handwritten. They may be from any source. If this
summary sheet is brought to the exam it must also be handed in with the exam (so make a
copy if you want to keep it).

• Notes:

– Read through the paper first and plan your time.

– Answers preferably in English, some assistants might not read Swedish.

– If a question does not give you all the details you need, you may make reasonable
assumptions. Your assumptions must be clearly stated. If your solution only works
under certain conditions, state them.

– Start each of the questions on a new page.

– The exact syntax of Haskell is not so important as long as the graders can understand
the intended meaning. If you are unsure just put in an explanation of your notation.

– Hand in the summary sheet (if you brought one) with the exam solutions.

– As a recommendation, consider spending around 1h 20 minutes per exercise. However,
this is only a recommendation.

– To see your exam: by appointment (send email to Alejandro Russo)

1

Functor type-class

class Functor c where fmap :: (a → b)→ c a → c b
Identity

fmap id ≡ id where id = λx → x

Map fusion

fmap (f ◦ g) ≡ fmap f ◦ fmap g

Figure 1: Functors

Problem 1: (Functors) As its name implies, a binary tree is a tree with a two-way branching
structure, i.e., a left and a right sub tree. In Haskell, such trees can be defined as follows.

data Tree a where
Leaf :: a → Tree a
Node :: Tree a → Tree a → Tree a

a) Show that Tree a is a functor. For that, you should provide an instance for the Functor
type-class and prove that fmap for finite trees, i.e., fmap :: (a → b) → Tree a → Tree b,
fulfills the laws for functors – see Figure 1.

instance Functor Tree where
fmap f (Leaf a) = Leaf (f a)
fmap f (Node t1 t2) = Node (fmap f t1) (fmap f t2)

Important: Assume that f and g are total, i.e., they do not raise any errors or loop in-
definitely when applied to an argument. If your proof is by induction, you should indicate
induction on what (e.g., in the length of the list). Justify every step in your proof.

(8p)

Proofs by induction on the height of the tree

-- Identity law

-- Base case
fmap id (Leaf a) ≡
-- by definition fmap.0
Leaf (id a) ≡
-- by definition of id
Leaf a ≡
-- by definition of id
id (Leaf a)

-- Inductive case
fmap id (Node l r) ≡
-- by definition of fmap.1
Node (fmap id l) (fmap id r) ≡
-- by I.H.
Node (id l) (id r) ≡

2

-- by definition of id
Node l r ≡
-- by definition of id
id (Node l r)

-- Map fusion

-- Base case
fmap (f ◦ g) (Leaf a) ≡
-- by definition fmap.0
Leaf ((f ◦ g) a) ≡
-- by definition of .
Leaf (f (g a)) ≡
-- by definition of fmap.0
fmap f (Leaf (g a)) ≡
-- by definition of fmap.0
fmap f (fmap g (Leaf a))

-- Inductive case
fmap (f ◦ g) (Node l r) ≡
-- by definition of fmap.1
Node (fmap (f ◦ g) l) (fmap (f ◦ g) r) ≡
-- by I.H.
Node (fmap f (fmap g l)) (fmap f (fmap g r)) ≡
-- by definition of fmap.1
fmap f (Node (fmap g l) (fmap g r)) ≡
-- by definition of fmap.1
fmap f (fmap g (Node l r))

b) As with lists, it is also useful to “fold” over trees. Given a tree t with elements e1, e2, . . ., en
and an operator ⊕, folding over the tree t with operator ⊕ intuitively means to intercalate
the operator among the elements of the tree, i.e., e1 ⊕ e2 ⊕ e3 ⊕ . . . ⊕ en. For simplicity, we
assume that the operator ⊕ is always associative. We call the function implementing folding
over trees foldT .

foldT :: (a → a → a)→ Tree a → a

By using foldT , we can now express a bunch of useful functions on trees.

P1

height tree = foldT (λl r → max l r + 1) ◦ fmap (const 0)
P2

sum tree = foldT (+)

P3

leaves = foldT (++) ◦ fmap (λx → [x])

Program P1 computes the height of a tree. Program P2 sums all the numbers in a tree.
Program P3 extracts all the elements of a tree.

Your task is to implement foldT . (4p)

3

foldT :: (a → a → a)→ Tree a → a
foldT op (Leaf a) = a
foldT op (Node l r) = (foldT op l) ‘op‘ (foldT op r)

c) There is a relation between mapping functions over trees’ leaves and lists. More specifically,
we have the following equation for finite and well-defined trees.

map f ◦ leaves ≡ leaves ◦ fmap f

It is the same to first extract the leaves and then map the function (left-hand side), as it is
to map the function first and then extracting the leaves (right-hand side).

Your task is to prove that the equation holds.

You can assume the following properties and definition for this exercise and the
rest of the exam!

(.)

(f ◦ g) x = f (g x)

Assoc. (.)

(f ◦ g) ◦ z = f ◦ (g ◦ z)

(id left)

id ◦ f = f

(id right)

f ◦ id = f

(eta)

λx → f x ≡ f

(cons.0)

x : [] = [x]

((++).0)

[] ++ ys = ys

((++).1)

(x : xs) ++ ys = x : (xs ++ ys)

(Assoc. (++))

xs ++ (ys ++ zs) ≡ (xs ++ ys) ++ zs

(map.0)

map f [] = []

(map.1)

map f (x : xs) = f x : map f xs

You cannot assume any property that relates (++), map, and fmap – if you need such prop-
erties, you should prove them too! (8p)

-- Auxiliary lemma
map f (xs ++ ys) ≡ map f xs ++ map f ys

-- Proof by induction on the length of xs

-- Base case
map f ([] ++ ys) ≡
-- (++).0
map f ys ≡
-- (++).0
[] ++ map f ys ≡
-- map.0
map f [] ++ map f ys

-- Inductive case
map f ((x : xs) ++ ys) ≡
-- map.1
f x : map f (xs ++ ys) ≡
-- I.H.
f x : (map f xs ++ map f ys) ≡
-- (++).1

4

(f x : map f xs) ++ map f ys ≡
-- map.1
map f (x : xs) ++ map f ys

-- Proof by induction on the height of trees
map f ◦ leaves ≡ leaves ◦ fmap f

-- Base case
map f (leaves (Leaf a)) ≡

-- Def. leaves
map f (foldT (++) (fmap (λx → [x]) (Leaf a))) ≡

-- Def. fmap on Leaf
map f (foldT (++) (Leaf [a])) ≡

-- Def. foldT
map f [a] ≡

-- Def (:)
map f (a : []) ≡

-- Def map.1
f a : map f [] ≡

-- Def. map.0
f a : [] ≡

-- Def (:)
[f a] ≡

-- Def. leaves
leaves (Leaf (f a)) ≡

-- Def. fmap
leaves (fmap f (Leaf a))

-- Inductive case
map f (leaves (Node l r)) ≡

-- Def. leaves
map f (foldT (++) (Node l r)) ≡

-- Def. foldT
map f ((foldT (++) l) ++ (foldT (++) r)) ≡

-- Auxiliary lemma
map f (foldT (++) l) ++ map f (foldT (++) r) ≡

-- Def. leaves
map f (leaves l) ++ map f (leaves r) ≡

-- IH
leaves (fmap f l) ++ leaves (fmap f r) ≡

-- Def. leaves
foldT (++) (fmap f l) ++ foldT (++) (fmap f r) ≡

-- Def. foldT
foldT (++) (Node (fmap f l) (fmap f r)) ≡

-- Def. leaves
leaves (Node (fmap f l) (fmap f r)) ≡

-- Def. fmap

5

leaves (fmap f (Node l r))

6

class Monad m where
return :: a → m a
(>>=) :: m a → (a → m b)→ m b

Left Identity

return x >>= f ≡ f x
Right Identity

m >>= return ≡ m

Associativity (x does not appear in k1 and k2)

(m >>= k1)>>= k2 ≡ m >>= (λx → k1 x >>= k2)

Figure 2: Monads

Problem 2. (Monads) During the lectures we said that a data type m is a monad if we can
define the primitives return and (>>=), and that m fulfills the monadic laws – see Figure 2. There
is, however, an alternative interface for monads described as follows.

class MonadAlternative m where
return ′ :: a → m a
join :: m (m a)→ m a
fmap′ :: (a → b) → m a → m b

Identity

fmap′ id m ≡ m
Map fusion

fmap′ (f ◦ g) ≡ fmap′ f ◦ fmap′ g

A1

fmap′ f ◦ return ′ ≡ return ′ ◦ f
A2

join ◦ fmap′ return ′ ≡ id
A3

join ◦ return ′ ≡ id

A4

join ◦ fmap′ join ≡ join ◦ join
A5

join ◦ fmap′ (fmap′ f) ≡ fmap′ f ◦ join

This interface requires m to be a functor and introduces an operation called join. Furthermore,
return ′, join, and fmap′ are required to obey various different laws.

a) Your task consists of showing that the alternative interface is enough to implement return
and (>>=). In other words, if you define return ′, fmap′, and join for certain data type m, then
you can show that m is an instance of the type-class Monad in Haskell. You should provide
the following type-class instance:

instance MonadAlternative m ⇒ Monad m where
return = ...
(>>=) = ...

instance MonadAlternative m ⇒ Monad m where
return = return ′

m >>= k = join (fmap′ k m)

(6p)

b) Assuming the laws for the alternative monadic interface, you should show that the imple-
mentation that you gave in the previous question is indeed a monad in the traditional sense,
i.e. it fulfills the laws from Figure 2. (14p)

7

-- Left identity
return x >>= f ≡
-- Def. return
join (fmap′ f (return x)) ≡
-- Def. return
join (fmap′ f (return ′ x)) ≡
-- Def. of (.)
join ((fmap′ f ◦ return ′) x) ≡
-- A1
join ((return ′ ◦ f) x) ≡
-- Def (.)
(join ◦ return ′ ◦ f) x ≡
-- A3
(id ◦ f) x ≡
-- Def. id
f x

-- Right identity
m >>= return ≡
-- Def. bind
join (fmap′ return m) ≡
-- Def. return
join (fmap′ return ′ m) ≡
-- Def. (.)
(join ◦ fmap′ return ′) m ≡
-- A2
id m ≡
-- Def. id
m

-- Associativity
m >>= (λx → k1 x >>= k2) ≡

-- Def. bind
join (fmap′ (λx → k1 x >>= k2) m) ≡

-- Def. bind
join (fmap′ (λx → join (fmap′ k2 (k1 x))) m) ≡

-- Def. (.)
join (fmap′ (λx → (join ◦ fmap′ k2 ◦ k1) x) m) ≡

-- Eta-contraction
join (fmap′ (join ◦ fmap′ k2 ◦ k1) m) ≡

-- Map fusion
join (fmap′ join (fmap′ (fmap′ k2 ◦ k1) m)) ≡

-- Map fusion
join (fmap′ join (fmap′ (fmap′ k2) (fmap′ k1 m))) ≡

-- Def (.)

8

(join ◦ fmap′ join) (fmap′ (fmap′ k2) (fmap′ k1 m))) ≡
-- A4

(join ◦ join) (fmap′ (fmap′ k2) (fmap′ k1 m))) ≡
-- Def (.)

join (join (fmap′ (fmap′ k2) (fmap′ k1 m))) ≡
-- Def (.)

join ((join ◦ fmap′ (fmap′ k2)) (fmap′ k1 m)) ≡
-- A5

join ((fmap′ k2 ◦ join) (fmap′ k1 m)) ≡
-- Def (.)

join (fmap′ k2 (join (fmap′ k1 m))) ≡
-- Def. bind

(join (fmap′ k1 m))>>= k2 ≡
-- Def. bind

(m >>= k1)>>= k2

9

Problem 3: (EDSL) Information-flow control (IFC) is a promising technology to guarantee
confidentiality of data when manipulated by untrusted code, i.e. code written by someone else.

-- Security level for public data
data L

-- Security level for secret data
data H

-- allowed flows of information
class l ‘CanFlowTo‘ l ′ where

-- Public data can flow into public entities
instance L ‘CanFlowTo‘ L where

-- Public data can flow into secret entities
instance L ‘CanFlowTo‘ H where

-- Secret data can flow into secret entities
instance H ‘CanFlowTo‘ H where

Figure 3: Allowed flows of information

In IFC, data gets classified either as
public (low) or secret (high), where
public information can flow into secret
entities but not vice versa. We encode
the sensitivity of data as abstract data
types, and the allowed flows of informa-
tion in the type-class CanFlowTo – see
Figure 3.

To build secure programs which do
not leak secrets, we build a small EDSL
in Haskell with two core concepts: la-
beled values and secure computations.
Labeled values are simply data tagged
with a security level indicating its sen-
sitivity. For example, a weather re-
port is a public piece of data, so we
can model it as a public labeled string
weather report ::Labeled L String . Sim-
ilarly, a credit card number is sensitive, so we model it as a secret integer cc number ::
Labeled H Integer .

A secure computation is an entity of type MAC l a, which denotes a computation that handles
data at sensitivity level l and produces a result (of type a) of this level. In order to remain secure,
secure computations can only observe data that “can flow to” the computation (see primitive
unlabel below), and can only create labeled values provided that information from the computation
“can flow to” the newly created labeled value (see primitive label below). We describe the API for
the EDSL in Figure 4, and provide a deep-embedded implementation for the API in Figure 5.

a) Your task is to take the implementation in Figure 5 and obtain an “intermediate embedding”
by removing Bind from the MAC l a data type. As a result, runMAC will no longer run
Bind ; instead, the defintion of (>>=) will change. After your modifications, it is important to
show that you can faithfully implement the whole EDSL API.

Important: If you alter the definition of MAC l a, or any other function in the deep-
embedded implementation, you need to show that your modifications are correct by deriving
them.

Help: You can assume that runMAC (m >>= f) ≡ runMAC m >>= runMAC ◦ f (12p)

data MAC l a where
Label :: (l ‘CanFlowTo‘ l ′)⇒ Labeled l ′ a → MAC l (Labeled l ′ a)
Unlabel :: (l ′ ‘CanFlowTo‘ l)⇒ Labeled l ′ a → MAC l a
JoinBind :: (l ‘CanFlowTo‘ l ′)⇒ MAC l ′ a

→ ((Labeled l ′ a)→ MAC l b)
→ MAC l b

Return :: a → MAC l a

10

-- Types
newtype Labeled l a
data MAC l a

-- Labeled values
label :: (l ‘CanFlowTo‘ l ′)⇒ a → MAC l (Labeled l ′ a)
unlabel :: (l ′ ‘CanFlowTo‘ l)⇒ Labeled l ′ a → MAC l a

-- MAC monad
return :: a → MAC l a
(>>=) :: MAC l a → (a → MAC l b)→ MAC l b

joinMAC :: (l ‘CanFlowTo‘ l ′)⇒ MAC l ′ a → MAC l (Labeled l ′ a)

-- Run function
runMAC :: MAC l a → IO a

Figure 4: EDSL API

-- Types
newtype Labeled l a = MkLabeled a

data MAC l a where
Label :: (l ‘CanFlowTo‘ l ′)⇒ Labeled l ′ a → MAC l (Labeled l ′ a)
Unlabel :: (l ′ ‘CanFlowTo‘ l)⇒ Labeled l ′ a → MAC l a
Join :: (l ‘CanFlowTo‘ l ′)⇒ MAC l ′ a → MAC l (Labeled l ′ a)
Return :: a → MAC l a
Bind :: MAC l a → (a → MAC l b)→ MAC l b

-- Labeled values
label = Label ◦MkLabeled
unlabel = Unlabel

-- MAC operations
joinMAC = Join

instance Monad (MAC l) where
return = Return
(>>=) = Bind

-- Run function
runMAC (Label lv) = return lv
runMAC (Unlabel (MkLabeled v)) = return v
runMAC (Join mac a) = runMAC mac a >>= return ◦MkLabeled
runMAC (Return a) = return a
runMAC (Bind mac f) = runMAC mac >>= runMAC ◦ f

Figure 5: Deep-embedded implemention

11

-- joinMAC
joinMAC mac h = JoinBind mac h Return

-- Implementing bind
instance Monad (MAC l) where

return = Return
Label lv >>= f = f lv
Unlabel (MkLabeled v)>>= f = f v
JoinBind mac h k >>= f = JoinBind mac h (λlv → k lv >>= f)
Return x >>= f = f x

-- Derivation for JoinBind
JoinBind mac h k >>= f
-- definition of JoinBind
(Join mac h >>= k)>>= f
-- associativity of bind
Join mac h >>= (λlv → k lv >>= f)
-- definition of JoinBind
JoinBind mac h (λv → k lv >>= f)

runMAC (Label lv) = return lv
runMAC (Unlabel (MkLabeled v)) = return v
runMAC (Return a) = return a
runMAC (JoinBind mac h k) = runMAC mac h >>= runMAC ◦ k ◦MkLabeled

-- Derivation for runMAC for JoinBind
runMAC (JoinBind mac h k)
-- definition of JoinBind
runMAC (Join mac h >>= k)
-- property of runMAC and bind
runMAC (Join mac h)>>= runMAC ◦ k
-- definition runMAC for Join from before
(runMAC mac h >>= return ◦MkLabeled)>>= runMAC ◦ k
-- associativity law for monads
runMAC mac h >>= (λx → (return ◦MkLabeled) x >>= runMAC ◦ k)
-- Definition of . and application
runMAC mac h >>= (λx → return (MkLabeled x)>>= runMAC ◦ k)
-- Left identity
runMAC mac h >>= (λx → (runMAC ◦ k) (MkLabeled x))
-- definition of (.)
runMAC mac h >>= (λx → (runMAC ◦ k ◦MkLabeled) x)
-- eta-contraction
runMAC mac h >>= runMAC ◦ k ◦MkLabeled

12

b) We would like to add the function output to the EDSL in order to print out messages. Ideally,
we will have two output channels, one for public data and one for secret values. However, for
simplicity, we assume that we have only one output channel: the screen. To mimic having
two output channels, however, we will pre-append some text to indicate on which channel
data is being sent. See the functions add location and print cc below.

-- outputting in a public channel
add location :: Labeled L String → MAC L ()
add location lstr = do

str ← unlabel lstr
msg ← label (str ++ "Gothenburg")

:: MAC L (Labeled L String)
output msg

-- outputting in a secret channel
print cc :: Labeled H Int → MAC H ()
print cc lcc = do

number ← unlabel lcc
msg ← label ("CC number "

++ show number)
:: MAC H (Labeled H String)

output msg

If we call add location with a weather report, then it prints out a message in the public
channel.

> let weather = MkLabeled "Sunny, 31 degrees, " :: Labeled L String
in runMAC (add location weather)

public channel : Sunny , 31 degrees,Gothenburg

By contrast, if we call print cc with a credit card number, then it sends the credit card digits
to the secret channel.

> let cc number = MkLabeled 1234 :: Labeled H Int
in runMAC (print cc cc number)

private channel : CC number 1234

Observe that the implementation of output depends on the type of the labeled value taken
as argument, i.e. output is overloaded. Your task is to extend the definitions of MAC l a,
(>>=), and runMAC to include the primitive output in the EDSL. (8p)

class TermLevel l where
term :: Labeled l a → Level

data Level = Public | Secret

instance TermLevel L where
term = Public

instance TermLevel H where
term = Secret

data MAC l a where
...

Output :: TermLevel l ⇒ Labeled l String → MAC l ()

instance Monad (MAC l) where

13

...
Output lv >>= f = f ()

runMAC (Output lv@(MkLabeled msg)) =
case term lv of

Public → putStrLn "public channel:">> putStrLn msg
Secret → putStrLn "secret channel:">> putStrLn msg

14

