Advanced Functional Programming TDA341/DIT260

Patrik Jansson

2010-03-10

Contact: Patrik Jansson, ext 5415.
Result: Announced no later than 2010-03-29
Exam check: Monday 2010-03-29 and Monday 2010-04-12. Both at 12-13 in EDIT 6125.
Aids: \quad You may bring up to two pages (on one A4 sheet of paper) of pre-written notes - a "summary sheet". These notes may be typed or handwritten. They may be from any source. If this summary sheet is brought to the exam it must also be handed in with the exam (so make a copy if you want to keep it).

Grades: $\quad 3: 24 \mathrm{p}, 4: 36 \mathrm{p}, 5: 48 \mathrm{p}$, max: 60 p
G: $24 \mathrm{p}, \mathrm{VG}: 48 \mathrm{p}$

Remember: Write legibly.
Don't write on the back of the paper.
Start each problem on a new sheet of paper.
Hand in the summary sheet (if you brought one) with the exam solutions.

Problem 1
Consider a DSL for vectors with the following API (similar to the Haskell list operations):

```
data Vector a -- to be implemented
type Ix = Int; type Length = Int
(#) :: Vector a }->\mathrm{ Vector a }->\mathrm{ Vector a
drop :: Ix }->\mathrm{ Vector a 阵tor a
fromFun :: Length }->(Ix->a)->\mathrm{ Vector a
fromList:: [a] }->\mathrm{ Vector a
head :: Vector a->a
index :: Vector a }->Ix->
length :: Vector a }->\mathrm{ Length
splitAt :: Ix }->\mathrm{ Vector a (Vector a,Vector a)
tail :: Vector a }->\mathrm{ Vector a
take :: Ix }->\mathrm{ Vector a }->\mathrm{ Vector a
```

(a) Classify the operations as constructors, combinators and run functions. Motivate.
(b) Implement the Vector API using $V a$ as the implementation of Vector a :
data $V a=V\{$ length $::$ Length, index $:: I x \rightarrow a\}$
(c) Give a deep embedding of Vector as a datatype $D a$ with at least 3 constructors and implement drop, length, splitAt and take. Identify which operations are primitive and which are derived.
(d) Specify at least three non-trivial properties (or laws) of the Vector API. Express them as QuickCheck properties (see Appendix A. 3 for a reminder).
(e) Implement a QuickCheck generator for values of type $D a$. Avoid generating infinite vectors.

Problem 2

Given monads m and n it is possible to define a product monad Prod $m n$ as
newtype Prod mna=Prod $\{\operatorname{unProd}::(m a, n a)\}$
(a) Implement the Monad instance for Prod $m n$. You may find these helpers convenient:

$$
\begin{aligned}
& f s t P:: \text { Prod } m n a \rightarrow m a \\
& f s t P=f s t \circ \text { unProd } \\
& \text { sndP }:: \text { Prod } m \text { n } a \rightarrow n a \\
& \text { sndP }=\text { snd } \circ \text { unProd }
\end{aligned}
$$

(b) Prove the three monad laws for your instance:

$$
\begin{array}{lc}
\text { Left identity } & \text { return } a \gg f \equiv f a \\
\text { Right identity } & m x \gg r e t u r n \equiv m x \\
\text { Associativity } & (m x \gg f) \gg=g \equiv m x \gg(\lambda x \rightarrow f x \gg=g)
\end{array}
$$

You may use the following lemmas (which hold for (at least) total values):
Surjective pairing $\quad p \equiv(f s t p$, snd $p)$
Eta expansion $\quad f \equiv \lambda x \rightarrow f x$
$f s t P$-distributes $\quad f s t P(f x) \gg=(f s t P \circ g) \equiv f s t P(f x \gg g)$
sndP-distributes $\operatorname{sndP}(f x) \gg=(s n d P \circ g) \equiv \operatorname{sndP}(f x \gg=g)$
(c) Does "Surjective pairing" hold for all $p::(a, b)$ in Haskell? Motivate why or why not. Does "Eta expansion" hold for all $f:: a \rightarrow b$ in Haskell? Motivate why or why not.
(20 p) Problem 3
Consider the following Haskell program:

```
import Prod -- contains the Prod m \(n\) monad instance from Problem 2
import qualified Control.Monad.Identity as CMI
import qualified Control.Monad.State as CMS
import qualified Control.Monad.Error as CME
instance (...) \(\Rightarrow\) CMS.MonadState \(s(\) Prod \(m n\) ) where ... -- omitted
instance (...) \(\Rightarrow\) CME.MonadError e (Prod \(m n\) ) where ... -- omitted
type Store \(=\) Integer
type Err \(=\) String
newtype Eval1 \(a=\) Eval1 \(\{\) unEval1 \(::\) CMS.StateT Store (CME.ErrorT Err CMI.Identity) \(a\}\)
    deriving (Monad, CMS.MonadState Store, CME.MonadError Err)
newtype Eval2 \(a=\) Eval2 \(\{\) unEval2 \(::\) CME.ErrorT Err (CMS.StateT Store CMI.Identity) \(a\}\)
    deriving (Monad, CMS.MonadState Store, CME.MonadError Err)
startStateFrom :: Monad \(m \Rightarrow\) state \(\rightarrow\) CMS.StateT state \(m a \rightarrow m a\)
startStateFrom \(=\) flip CMS.evalState \(T\)
emptyStore :: Store
emptyStore \(=0\)
runEval1 :: Eval1 \(a \rightarrow\) Either Err \(a\)
runEval1 \(=\) CMI.runIdentity \(\circ\) CME.runError \(T \circ\) startStateFrom emptyStore \(\circ\) unEval1
runEval2 :: Eval2 \(a \rightarrow\) Either Err \(a\)
runEval2 \(=\) CMI.runIdentity \(\circ\) startStateFrom emptyStore \(\circ\) CME.runErrorT \(\circ\) unEval2
\((* *)::(a 1 \rightarrow a 2) \rightarrow(b 1 \rightarrow b 2) \rightarrow(a 1, b 1) \rightarrow(a 2, b 2)\)
\(f *-g=\lambda(a, b) \rightarrow(f a, g b)\)
type Test \(=\) Prod Eval1 Eval2
check :: Test \(a \rightarrow\) (Either Err a, Either Err a)
check \(=(\) runEval1 \(\rightarrow\) runEval2 \() \circ\) unProd
test1 :: (CME.MonadError Err m, CMS.MonadState Store \(m\) ) \(\Rightarrow m\) Store
test1 \(=(\) do CMS.put 1738; CME.throwError "hello"; CMS.get \()\)
    'CME.catchError' \(\lambda e \rightarrow\) CMS.get
\(\operatorname{main}=\) print \((\) check test 1\()\)
```

(a) What would the types Eval1, Eval2 look like without using anything from Control.Monad.* (expand out the types and simplify away the newtypes)?
(b) What does main print? Motivate.
(c) At what type is test1 used in main? Why is it defined with a more general type?
(d) Use monad transformers to extend the original Eval1, runEval1 to Eval3, runEval3 adding read-only access to an environment Env. Annotate the definition of runEval3 with the types at the intermediate stages of the "composition pipeline". (For the "pipeline" $f \circ g \circ h$ that would be the return types of g and h.)

A Library documentation

A. 1 Monoids

```
class Monoid a where
    mempty :: a
    mappend :: a }->a->
```

A monoid should satisfy the laws

$$
\begin{aligned}
\text { mappend mempty } m & =m \\
\text { mappend } m \text { mempty } & =m \\
\text { mappend (mappend } \left.m_{1} m_{2}\right) m_{3} & =\text { mappend } m_{1}\left(\text { mappend } m_{2} m_{3}\right)
\end{aligned}
$$

List is a monoid:

```
instance Monoid [a] where
    mempty = []
    mappend xs ys = xs + ys
```


A. 2 Monads and monad transformers

```
class Monad m}\mathrm{ where
    return :: a->ma
        (>>)::ma->(a->mb)->mb
class MonadTrans t where
    lift :: Monad m=>ma->t ma
```


Reader monads

type ReaderT e ma
runReader T :: Reader T e $m a \rightarrow e \rightarrow m a$
class Monad $m \Rightarrow$ MonadReader e $m \mid m \rightarrow e$ where
-- Get the environment
ask :: $m e$
-- Change the environment for a given computation local $::(e \rightarrow e) \rightarrow m a \rightarrow m a$

Writer monads

```
type WriterT w ma
runWriterT :: WriterT w ma->m(a,w)
class (Monad m, Monoid w) => MonadWriter w m|m->w where
            -- Output something
        tell :: w->m()
            -- Listen to the outputs of a computation.
    listen :: ma->m(a,w)
```


State monads

```
type StateT s ma
runState \(T:\) StateT s \(m a \rightarrow s \rightarrow m(a, s)\)
class Monad \(m \Rightarrow\) MonadState \(s m \mid m \rightarrow s\) where
    -- Get the current state
    get :: m s
    -- Set the current state
    put \(:: s \rightarrow m\) ()
```


Error monads

type ErrorT e ma
runError T :: ErrorT e $m a \rightarrow m$ (Either e a)
class Monad $m \Rightarrow$ MonadError e $m \mid m \rightarrow e$ where
-- Throw an error
throwError : : $e \rightarrow m a$
-- If the first computation throws an error, it is
-- caught and given to the second argument.
catchError $:: m a \rightarrow(e \rightarrow m a) \rightarrow m a$

A. 3 Some QuickCheck

-- Create Testable properties:
-- Boolean expressions: $(\wedge),(\mid), \neg, \ldots$
(==>) :: Testable $p \Rightarrow$ Bool $\rightarrow p \rightarrow$ Property
forAll :: (Show a, Testable $p) \Rightarrow$ Gen $a \rightarrow(a \rightarrow p) \rightarrow$ Property
-- ... and functions returning Testable properties
-- Run tests:
quickCheck :: Testable prop \Rightarrow prop $\rightarrow I O$ ()
-- Measure the test case distribution:
collect :: (Show a, Testable p) $\Rightarrow a \quad \rightarrow p \rightarrow$ Property
label :: Testable $p \Rightarrow \quad$ String $\rightarrow p \rightarrow$ Property
classify :: Testable $p \Rightarrow$ Bool \rightarrow String $\rightarrow p \rightarrow$ Property
collect $x=$ label (show x)
label $s=$ classify True s
-- Create generators:
choose $\quad::$ Random $a \Rightarrow(a, a) \rightarrow$ Gen a
elements $::[a] \quad \rightarrow$ Gen a
oneof $::\left[\begin{array}{lll}\text { Gen } a]\end{array} \rightarrow\right.$ Gen a
frequency :: [(Int, Gen a)] \rightarrow Gen a
sized $\quad::($ Int \rightarrow Gen $a) \quad \rightarrow$ Gen a
sequence $::[$ Gen $a] \quad \rightarrow$ Gen $[a]$
vector $\quad::$ Arbitrary $a \Rightarrow$ Int \rightarrow Gen $[a]$
arbitrary :: Arbitrary $a \Rightarrow \quad$ Gen a
fmap $\quad::(a \rightarrow b) \rightarrow$ Gen $a \rightarrow$ Gen b
instance Monad (Gen a) where ...
-- Arbitrary - a class for generators
class Arbitrary a where
arbitrary :: Gen a
shrink $\quad:: a \rightarrow[a]$

