
Finite Automata Theory and Formal Languages

TMV027/DIT321– LP4 2018

Lecture 9

Ana Bove

April 19th 2018

Recap: Regular Expressions

Algebraic representation of (regular) languages;

R ,S ::= ∅ | ǫ | a | R + S | RS | R∗ ...

... representing the languages ∅, {ǫ}, {a},L(R) ∪ L(S),L(R)L(S)
and L(R)∗ respectively;

Brief on algebraic laws for RE;

How to transform a FA into a RE:

By eliminating states;

With a system of linear equations and Arden’s lemma.

April 19th 2018, Lecture 9 TMV027/DIT321 1/29

Example: Eliminating States

Consider the automaton D

q0 q1

q2

a c

b

db

a

By eliminating states the expression is

a∗b(c + da∗b)∗

Consider the automaton D ′

q0 q1

a c

b

d

By eliminating states the expression is

(a + bc∗d)∗bc∗

But intuitively these automata are equivalent...
April 19th 2018, Lecture 9 TMV027/DIT321 2/29

Example: Linear Equation System

The linear equations corresponding to the automaton D ′ are

E0 = aE0 + bE1 E1 = ǫ+ cE1 + dE0

The resulting RE depends on the order we solve the system.

If we solve E1 first we get E0 = (a + bc∗d)∗bc∗.

If we solve E0 first we get E0 = a∗b(c + da∗b)∗.

It should be that a∗b(c + da∗b)∗ = (a + bc∗d)∗bc∗! (see proof in slide 10)

Exercise: What RE do we obtain for the automaton D?

April 19th 2018, Lecture 9 TMV027/DIT321 3/29

Overview of Today’s Lecture

Equivalence between FA and RE: from RE to FA;

More on algebraic laws for regular expressions;

Pumping Lemma for RL;

Closure properties of RL.

Contributes to the following learning outcome:
Explain and manipulate the diff. concepts in automata theory and formal lang;

Have a clear understanding about the equivalence between (non-)deterministic
finite automata and regular expressions;

Understand the power and the limitations of regular lang and context-free lang;

Prove properties of languages, grammars and automata with rigorously formal
mathematical methods;

Design automata, regular expressions and context-free grammars accepting or
generating a certain language;

Describe the language accepted by an automata or generated by a regular
expression or a context-free grammar;

Determine if a certain word belongs to a language;

Differentiate and manipulate formal descriptions of lang, automata and grammars.

April 19th 2018, Lecture 9 TMV027/DIT321 4/29

From Regular Expressions to Finite Automata

Proposition: Every language defined by a RE is accepted by a FA.

Proof: Let L = L(R) for some RE R.

By induction on R we construct a ǫ-NFA E with only one final state and
no arcs into the initial state or out of the final state.

Moreover, E is such that L = L(E).

Base cases are the RE ∅, ǫ and a ∈ Σ.

The corresponding ǫ-NFA accepting the languages ∅, {ǫ} and {a} are:

ǫ a

April 19th 2018, Lecture 9 TMV027/DIT321 5/29

From RE to FA: Inductive Step (Cont.)

IH: Given the RE R and S there are ǫ-NFA with only one final state and no arcs into the
initial state or out of the final state accepting L(R) and L(S).

We construct the ǫ-NFA for R + S , RS and R∗ accepting L(R) ∪ L(S), L(R)L(S) and
L(R)∗ respectively:

ǫ

ǫ

ǫ

ǫ

R

S

ǫ
R S

ǫ ǫ

ǫ

ǫ

R

April 19th 2018, Lecture 9 TMV027/DIT321 6/29

Example: From RE to FA

If we follow this method for the RE 0∗1 we obtain the ǫ-NFA

ǫ 0

ǫ

ǫ

ǫ ǫ 1

Compare it with the following DFA for the same language:

0

1

April 19th 2018, Lecture 9 TMV027/DIT321 7/29

Recall: Algebraic Laws for Regular Expressions

The following equalities hold for any RE R , S and T :

Idempotent: R + R = R
Commutative: R + S = S + R In general, RS 6= SR
Associative: R + (S + T) = (R + S) + T R(ST) = (RS)T
Distributive: R(S + T) = RS + RT (S + T)R = SR + TR

Identity: R + ∅ = ∅+ R = R Rǫ = ǫR = R
Annihilator: R∅ = ∅R = ∅

∅∗ = ǫ∗ = ǫ
R+ = RR∗ = R∗R
R∗ = (R∗)∗ = R∗R∗ = ǫ+ R+

Note: Compare (some of) these laws with those for sets on slide 14 lecture 2.

April 19th 2018, Lecture 9 TMV027/DIT321 8/29

Recall: More Algebraic Laws for Regular Expressions

Other useful laws to simplify regular expressions are:

Shifting rule: R(SR)∗ = (RS)∗R

Denesting rule: (R∗S)∗R∗ = (R + S)∗

Note: By the shifting rule we also get R∗(SR∗)∗ = (R + S)∗

Variation of the denesting rule: (R∗S)∗ = ǫ+ (R + S)∗S

Note: These rules are not always trivial to apply ... :-)

April 19th 2018, Lecture 9 TMV027/DIT321 9/29

Example: Proving Equalities Using the Algebraic Laws

Example: The set of all words with no substring of more than two adjacent 0’s is
(1 + 01 + 001)∗(ǫ+ 0 + 00). Now,

(1 + 01 + 001)∗(ǫ+ 0 + 00)

= ((ǫ+ 0)(ǫ+ 0)1)∗(ǫ+ 0)(ǫ + 0) by distributivity

= (ǫ+ 0)(ǫ+ 0)(1(ǫ + 0)(ǫ + 0))∗ by shifting

= (ǫ+ 0 + 00)(1 + 10 + 100)∗ by distributivity

Then (1 + 01 + 001)∗(ǫ+ 0 + 00) = (ǫ+ 0 + 00)(1 + 10 + 100)∗

Example: A proof that a∗b(c + da∗b)∗ = (a + bc∗d)∗bc∗ (recall slides 2 and 3):

a∗b(c + da∗b)∗ = a∗b(c∗da∗b)∗c∗ by denesting (R = c,S = da∗b)

a∗b(c∗da∗b)∗c∗ = (a∗bc∗d)∗a∗bc∗ by shifting (R = a∗b,S = c∗d)

(a∗bc∗d)∗a∗bc∗ = (a+ bc∗d)∗bc∗ by denesting (R = a,S = bc∗d)

April 19th 2018, Lecture 9 TMV027/DIT321 10/29

Equality of Regular Expressions

Recall: RE are a way to denote languages.

Then, for RE R and S , R = S actually means L(R) = L(S).

Hence we can prove the equality of RE in the same way we prove the
equality of languages!

Example: Let us show that R∗ = R∗R∗. Let L = L(R).

Then L(R∗) = L(R)∗ = L∗.

L∗ ⊆ L∗L∗ since ǫ ∈ L∗.

Conversely, if L∗L∗ ⊆ L∗ then x = x1x2 with x1 ∈ L∗ and x2 ∈ L∗.

If x1 = ǫ or x2 = ǫ then it is clear that x ∈ L∗.

Otherwise x1 = u1u2 . . . un with ui ∈ L and x2 = v1v2 . . . vm with vj ∈ L.

Then x = x1x2 = u1u2 . . . unv1v2 . . . vm is in L∗.
April 19th 2018, Lecture 9 TMV027/DIT321 11/29

Proving Algebraic Laws for Regular Expressions

In general, given the RE R and S we can prove the law R = S as follows:

1 Convert R and S into concrete RE C and D, respectively, by replacing
each variable in the RE R and S by (different) concrete symbols.

Example: R(SR)∗ = (RS)∗R can be converted into a(ba)∗ = (ab)∗a.

2 Prove or disprove whether L(C) = L(D). If L(C) = L(D) then
R = S is a true law, otherwise it is not.

Example: We can prove the shifting law by induction: ∀n ∈ N.a(ba)n = (ab)na.

Theorem: The above procedure correctly identifies the true laws for RE.

Proof: See theorems 3.14 and 3.13 in pages 121 and 120 respectively.

April 19th 2018, Lecture 9 TMV027/DIT321 12/29

Example: Proving the Denesting Rule

We can state (R∗S)∗R∗ = (R +S)∗ by proving L((a∗b)∗a∗) = L((a+b)∗):

⊆: Let x ∈ (a∗b)∗a∗, then x = vw with v ∈ (a∗b)∗ and w ∈ a∗.

By (structural) induction on v . If v = ǫ we are done.

Otherwise v = av ′ or v = bv ′.
In both cases v ′ ∈ (a∗b)∗ hence by IH v ′w ∈ (a+ b)∗ and so is vw .

⊇: Let x ∈ (a + b)∗.

By (structural) induction on x . If x = ǫ then we are done.

Otherwise x = x ′a or x = x ′b and x ′ ∈ (a + b)∗.

By IH x ′ ∈ (a∗b)∗a∗ and then x ′ = vw with v ∈ (a∗b)∗ and w ∈ a∗.

If x ′a = v(wa) ∈ (a∗b)∗a∗ since v ∈ (a∗b)∗ and (wa) ∈ a∗.

If x ′b = (v(wb))ǫ ∈ (a∗b)∗a∗ since v(wb) ∈ (a∗b)∗ and ǫ ∈ a∗.
April 19th 2018, Lecture 9 TMV027/DIT321 13/29

How to Identify Regular Languages?

We have seen that a language is regular iff there is a DFA that accepts the
language.

Then we saw that DFA, NFA and ǫ-NFA are equivalent in the sense that
we can convert between them.

Hence FA accept all and only the regular languages (RL).

Now we have seen how to convert between FA and RE.

Thus RE also define all and only the RL.

April 19th 2018, Lecture 9 TMV027/DIT321 14/29

How to Prove that a Language is NOT Regular?

In a FA with n states, any path

q1
a1→ q2

a2→ q3
a3→ . . .

am−1→ qm
am→ qm+1

has a loop if m > n.

That is, we have i < j such that qi = qj in the path above.

This is an application of the Pigeonhole Principle.

April 19th 2018, Lecture 9 TMV027/DIT321 15/29

How to Prove that a Language is NOT Regular?

Example: Let us prove that L = {0m1m|m > 0} is NOT a RL.

Let us assume it is: then L = L(A) for some FA A with n states, n > 0.

Let k > n > 0 and let w = 0k1k ∈ L.

Then there must be an accepting path q0
w→ qf ∈ F .

Since k > n, there is a loop (pigeonhole principle) when reading the 0’s.

Then w = xyz with |xy | = j 6 n, y 6= ǫ and z = 0k−j1k such that

q0
x→ ql

y→ ql
z→ qf ∈ F

Observe that the following path is also an accepting path

q0
x→ ql

z→ qf ∈ F

However y must be of the form 0i with i > 0 hence xz = 0k−i1k /∈ L.

This contradicts the fact that A accepts L.
April 19th 2018, Lecture 9 TMV027/DIT321 16/29

The Pumping Lemma for Regular Languages

Theorem: Let L be a RL.
Then, there exists a constant n—which depends on L—such that for every
string w ∈ L with |w | > n, it is possible to break w into 3 strings x , y and
z such that w = xyz and

1 y 6= ǫ;

2 |xy | 6 n;

3 ∀k > 0. xykz ∈ L.

April 19th 2018, Lecture 9 TMV027/DIT321 17/29

Proof of the Pumping Lemma

Assume we have a FA A that accepts the language, then L = L(A).

Let n be the number of states in A.

Then any path of length m > n has a loop.

Let us consider w = a1a2 . . . am ∈ L.

We have an accepting path and a loop such that

q0
x→ ql

y→ ql
z→ qf ∈ F

with w = xyz ∈ L, y 6= ǫ, |xy | 6 n.

Then we also have

q0
x→ ql

yk→ ql
z→ qf ∈ F

for any k , that is, ∀k > 0. xykz ∈ L.
April 19th 2018, Lecture 9 TMV027/DIT321 18/29

Example: Application of the Pumping Lemma

We use the Pumping lemma to prove that L = {0m1m|m > 0} is not a RL.

We assume it is. Then the Pumping lemma applies.

Let n be the constant given by the lemma and let w = 0n1n ∈ L, then |w | > n.

By the lemma we know that w = xyz with y 6= ǫ, |xy | 6 n and ∀k > 0. xykz ∈ L.

Since y 6= ǫ and |xy | 6 n, we know that y = 0i with i > 1.

However, we have a contradiction since xykz /∈ L for k 6= 1 since it either has too few
0’s (k = 0) or too many (k > 1).

Note: This is connected to the fact that a FA has finite memory!
If we could build a machine with infinitely many states it would be able to
recognise the language.

April 19th 2018, Lecture 9 TMV027/DIT321 19/29

Example: Application of the Pumping Lemma

Example: Let us prove that L = {0i1j |i 6 j} is not a RL.

Let us assume it is, hence the Pumping lemma applies.

Let n be given by the Pumping lemma and let w = 0n1n+1 ∈ L, hence |w | > n.

Then we know that w = xyz with y 6= ǫ, |xy | 6 n and ∀k > 0. xykz ∈ L.

Since y 6= ǫ and |xy | 6 n, we know that y = 0r with r > 1.

However, we have a contradiction since xykz /∈ L for k > 2 since it will have more 0’s
than 1’s.

(Even for k = 2 if r > 1.)

Example: What happens if we choose w = 1n ∈ L? Or w = 0n/21n ∈ L?

Exercise: What about the languages {0i1j | i > j}, {0i1j | i > j} and {0i1j | i 6= j}?
April 19th 2018, Lecture 9 TMV027/DIT321 20/29

Pumping Lemma is not a Sufficient Condition

By showing that the Pumping lemma does not apply to a certain language
L we prove that L is not regular.

However, if the Pumping lemma does apply to L, we cannot conclude
whether L is regular or not!

Example: We know L = {bmcm | m > 0} is not regular.

Let us consider L′ = a+L ∪ (b + c)∗.

Using clousure properties (to come later) we can prove that L′ is not regular.

However, the Pumping lemma does apply for L′ with n = 1.

This shows the Pumping lemma is not a sufficient condition for a language to be

regular.

April 19th 2018, Lecture 9 TMV027/DIT321 21/29

Closure Properties for Regular Languages

Let M and N be RL. Then M = L(R) = L(D) and N = L(S) = L(F)
for RE R and S , and DFA D and F .

We have seen that RL are closed under the following operations:

Union: M∪N = L(R + S) or M∪N = L(D ⊕ F) (s.22, l.5);

Complement: M = L(D) (slide 24, lec. 5)

Intersection: M∩N = M∪N or M∩N = L(D ⊗ F) (s.21, l.5);

Difference: M−N = M∩N ;

Concatenation: MN = L(RS);
Closure: M∗ = L(R∗).

April 19th 2018, Lecture 9 TMV027/DIT321 22/29

More Closure Properties for Regular Languages

RL are also closed under the following operations:

Prefix:
See additional exercise 3 on DFA.
Hint: in D, make final all states in a path from the
start state to final state.

Reversal:
Recall that rev(a1 . . . an) = an . . . a1 and
∀x .rev(rev(x)) = x (slides 15 & 17, lec. 4).

April 19th 2018, Lecture 9 TMV027/DIT321 23/29

Closure under Prefix

Another way to prove that the language of prefixes of a RL is regular:

Define the function:

pre : RE → RE
pre(∅) = ∅
pre(ǫ) = ǫ
pre(a) = ǫ+ a
pre(R1 + R2) = pre(R1) + pre(R2)
pre(R1R2) = pre(R1) + R1pre(R2)
pre(R∗) = R∗pre(R)

and prove that L(pre(R)) = Prefix(L(R)).

Then, if L = L(R) for some RE R then Prefix(L) = Prefix(L(R)) = L(pre(R)).
April 19th 2018, Lecture 9 TMV027/DIT321 24/29

Closure under Reversal

We define the function:

r : RE → RE
∅r = ∅ (R1 + R2)

r = R r
1 + R r

2

ǫr = ǫ (R1R2)
r = R r

2R
r
1

ar = a (R∗)r = (R r)∗

Theorem: If L is regular so is Lr.

Proof: (See theo. 4.11, pages 139–140).

Let R be a RE such that L = L(R).
We need to prove by induction on R that L(R r) = (L(R))r.
Hence Lr = (L(R))r = L(R r) and Lr is regular.

Example: The reverse of the language defined by (0 + 1)∗0 can be defined by 0(0 + 1)∗.

April 19th 2018, Lecture 9 TMV027/DIT321 25/29

Closure under Reversal

Another way to prove this result is by constructing a ǫ-NFA for Lr.

Proof: Let N = (Q,Σ, δN , q0,F) be a NFA such that L = L(N).

Define a ǫ-NFA E = (Q ∪ {q},Σ, δE , q, {q0}) with q /∈ Q and δE such that

r ∈ δE (s, a) iff s ∈ δN(r , a) for r , s ∈ Q
r ∈ δE (q, ǫ) iff r ∈ F

April 19th 2018, Lecture 9 TMV027/DIT321 26/29

Using Closure Properties

Example: Consider L1 and L2 such that L1 is regular, L2 is not regular
but L1 ∩ L2 is regular.

Is L1 ∪ L2 is regular?

Let us assume that L1 ∪ L2 is regular.

Then (L1 ∪L2 −L1)∪ (L1 ∩L2) should also be regular because of the closure properties.

But this is actually L2 which is not regular!

We arrive to a contradiction.

Hence L1 ∪ L2 cannot be regular.

April 19th 2018, Lecture 9 TMV027/DIT321 27/29

Overview of Next Lecture

Sections 4.3–4.4:

Decision properties for RL;

Equivalence of RL;

Minimisation of automata.

April 19th 2018, Lecture 9 TMV027/DIT321 28/29

Overview of next Week

Mon 23 Tue 24 Wed 25 Thu 26 Fri 27

Ex 10-12 EA
RL.

10-12 ES61
Individual
help

Lec 13-15 HB3
RL.

Lec 13-15 HB3
CFG.

Ex 15-17 EA
RL.

15-17 EL41
Consultation

Assignment 4: RL.
Deadline: Sunday April 29th 23:59.

April 19th 2018, Lecture 9 TMV027/DIT321 29/29

