
Finite Automata Theory and Formal Languages

TMV027/DIT321– LP4 2018

Lecture 4

Ana Bove

March 23rd 2018

Recap: Formal Proofs

How formal should a proof be? Depends on its purpose...
... but should be convincing ...
... and the validity of each step should be easily understood;

One proves the conclusions assuming the validity of the hypotheses!

Different kind of proofs (contradiction, contrapositive,
counterexample, induction, ...);

Simple/strong induction allows to prove a property over all Natural
numbers;

Sometimes we prove several properties that depend on each other
(mutual induction);

Inductive definitions generate possibly infinite sets with finite
elements: Booleans, Natural numbers, lists, trees, ...

We can recursively defined functions over inductive sets.
March 23rd 2018, Lecture 4 TMV027/DIT321 1/25

Overview of Today’s Lecture

Structural induction;

Concepts of automata theory.

Contributes to the following learning outcome:

Prove properties of languages, grammars and automata with
rigorously formal mathematical methods.

March 23rd 2018, Lecture 4 TMV027/DIT321 2/25

Inductively Defined Sets (Recap)

To define a set S by induction we need to specify:

Base cases: e1[. . .], . . . , em[. . .] ∈ S ;

Inductive steps: Given . . . and s1, . . . , ski ∈ S ,
then c1[. . . , s1, . . . , sk1], . . . , cn[. . . , s1, . . . , skn] ∈ S ;

Closure: There is no other way to construct elements in S .
(We will usually omit this part.)

Alternatively, · · ·
e1[. . .] ∈ S

· · · · · ·
em[. . .] ∈ S

· · · s1, . . . , sk1 ∈ S

c1[. . . , s1, . . . , sk1] ∈ S
· · · · · · s1, . . . , skn ∈ S

cn[. . . , s1, . . . , skn] ∈ S

March 23rd 2018, Lecture 4 TMV027/DIT321 3/25

Proofs by Structural Induction

Generalisation of mathematical induction to other inductively defined sets
such as lists, trees, . . .

VERY useful in computer science: it allows to prove properties over the (finite) elements

in a data type!

Given an inductively defined set S , to prove ∀ s ∈ S .P(s) then:

Base cases: We prove that P(e1[. . .]), . . . ,P(em[. . .]);

Inductive steps: Assuming P(s1), . . . ,P(ski) (our inductive hypotheses IH),
we prove P(c1[. . . , s1, . . . , sk1]), . . . ,P(cn[. . . , s1, . . . , skn]);

Closure: ∀ s ∈ S .P(s).
(We will usually omit this part.)

March 23rd 2018, Lecture 4 TMV027/DIT321 4/25

Inductive Sets and Structural Induction

Inductive definition of S :
· · ·

e1[. . .] ∈ S
· · · · · ·

em[. . .] ∈ S

· · · s1, . . . , sk1 ∈ S

c1[. . . , s1, . . . , sk1] ∈ S
· · · · · · s1, . . . , skn ∈ S

cn[. . . , s1, . . . , skn] ∈ S

Inductive principle associated to S :

base cases

P(e1[. . .])
...

P(em[. . .])

inductive steps

∀ . . . , s1, . . . , sk1 ∈ S .

IH︷ ︸︸ ︷
P(s1), · · · ,P(sk1)⇒ P(c1[. . . , s1, . . . , sk1])

...
∀ . . . , s1, . . . , skn ∈ S .P(s1), · · · ,P(skn)⇒ P(cn[. . . , s1, . . . , skn])

∀ s ∈ S .P(s)

March 23rd 2018, Lecture 4 TMV027/DIT321 5/25

Example: Structural Induction over Lists

We can now use recursion to define functions over an inductively defined
set and then prove properties about these functions by structural induction.

Recall recursive definitions of append and length functions over lists:

[] ++ ys = ys len [] = 0
(x : xs) ++ ys = x : (xs ++ ys) len (x : xs) = 1 + len xs

Proposition: ∀ xs, ys ∈ List A. len (xs ++ ys) = len xs ++ len ys.

Proof: By structural induction on xs.
P(xs) is ∀ ys ∈ List A. len (xs ++ ys) = len xs ++ len ys.

Base case: We prove P[].
Inductive step: We show ∀ x ∈ A. ∀ xs ∈ List A.P(xs)⇒ P(x : xs).

Closure: ∀ xs ∈ List A.P(xs).

March 23rd 2018, Lecture 4 TMV027/DIT321 6/25

Example: Structural Induction over Lists

Proposition: ∀ xs ∈ List A. xs ++ [] = xs.

Proof: By structural induction on xs.
P(xs) is xs ++ [] = xs.

Base case: We prove P[].
Inductive step: We show ∀ x ∈ A. ∀ xs ∈ List A.P(xs)⇒ P(x : xs).
Closure: ∀ xs ∈ List A.P(xs).

Proposition: ∀ xs, ys, zs ∈ List A. (xs ++ ys) ++ zs = xs ++ (ys ++ zs).

Proof: By structural induction on xs.
P(xs) is ∀ ys, zs ∈ List A. (xs ++ ys) ++ zs = xs ++ (ys ++ zs).

Base case: We prove P[].
Inductive step: We show ∀ x ∈ A. ∀ xs ∈ List A.P(xs)⇒ P(x : xs).

Closure: ∀ xs ∈ List A.P(xs).

March 23rd 2018, Lecture 4 TMV027/DIT321 7/25

Example: Structural Induction over Trees

Let us (recursively) define functions counting the number of edges and of nodes of a
tree:

ne(x) = 0 nn(x) = 1
ne(x , t1, . . . , tk) = k+ nn(x , t1, . . . , tk) = 1+

ne(t1) + . . .+ ne(tk) nn(t1) + . . .+ nn(tk)

Proposition: ∀ t ∈ Tree A. nn(t) = 1 + ne(t).

Proof: By structural induction on t.
P(t) is nn(t) = 1 + ne(t).

Base case: We prove P(x).
Inductive step: We show
∀ x ∈ A.∀ t1, . . . , tk ∈ Tree A.P(t1), . . . ,P(tk)⇒ P(x , t1, . . . , tk).

Closure: ∀ t ∈ Tree A.P(t).

March 23rd 2018, Lecture 4 TMV027/DIT321 8/25

Proofs by Induction: Overview of the Steps to Follow

1 State property P to prove by induction.
Might be more general than the actual statement we need to prove!

2 Determine and state the method to use in the proof!!!!
Example: Mathematical induction on the length of the list, course-of-values

induction on the height of a tree, structural induction over a certain element, ...

3 Identify and state base case(s).
Could be more than one! Not always trivial to determine.

4 Prove base case(s).

5 Identify and state IH!
Will depend on the method to be used (see point 2).

6 Prove inductive step(s).

7 (State closure.)

8 Deduce your statement from P (if needed).

March 23rd 2018, Lecture 4 TMV027/DIT321 9/25

Central Concepts of Automata Theory: Alphabets

Definition: An alphabet is a finite, non-empty set of symbols, usually
denoted by Σ.

The number of symbols in Σ is denoted as |Σ|.

Notation: We will use a, b, c, . . . to denote symbols.

Note: Alphabets will represent the observable events of an automaton.

Example: Some alphabets:

on/off-switch: Σ = {Push};
parity counter: Σ = {p0, p1};
complex vending machine: Σ = {5 kr , 10 kr , tea, coffee}.

March 23rd 2018, Lecture 4 TMV027/DIT321 10/25

Strings or Words

Definition: Strings/Words are finite sequence of symbols from some
alphabet.

Notation: We will use w , x , y , z , . . . to denote words.

Note: Words will represent the behaviour of an automaton.

Example: Some behaviours:

on/off-switch: Push Push Push Push;

parity counter: p0p1 or p0p0p0p1p1p0;

comlex vending machine: 5 kr 5 kr coffee 10 kr coffee 5 kr tea.

Note: Some words do NOT represent behaviour though . . .

Example: complex vending machine: tea 5 kr coffee.

March 23rd 2018, Lecture 4 TMV027/DIT321 11/25

Inductive Definition of Σ∗

Definition: Σ∗ is the set of all words for a given alphabet Σ.

This can be described inductively in the following two ways:

1 Base case: ε ∈ Σ∗;
Inductive step: if a ∈ Σ and x ∈ Σ∗ then ax ∈ Σ∗.
(We will usually work with this definition.)

Note: Recall the definition of lists!

2 Base case: ε ∈ Σ∗;
Inductive step: if a ∈ Σ and x ∈ Σ∗ then xa ∈ Σ∗.

Note: We can prove that both definitions define exactly the same set of words.

Notation: We will often write just a instead of aε.

We can (recursively) define functions over Σ∗ and
(inductively) prove properties about those functions.
March 23rd 2018, Lecture 4 TMV027/DIT321 12/25

Concatenation

Definition: Given the words x and y , the concatenation xy is defined as:

εy = y
(ax ′)y = a(x ′y)

Note: Recall ++ on lists.

Example: Observe that in general xy 6= yx .

If x = 010 and y = 11 then xy = 01011 and yx = 11010.

Lemma: If Σ has more than one symbol then concatenation is not
commutative.

March 23rd 2018, Lecture 4 TMV027/DIT321 13/25

Prefix and Suffix

Definition: Given x and y words over a certain alphabet Σ:

x is a prefix of y iff there exists z such that y = xz ;

x is a suffix of y iff there exists z such that y = zx .

Note: ∀ x ∈ Σ∗. ε is both a prefix and a suffix of x .

Note: ∀ x ∈ Σ∗. x is both a prefix and a suffix of x .

March 23rd 2018, Lecture 4 TMV027/DIT321 14/25

Length and Reverse

Definition: The length function | | : Σ∗ → N is defined as:

|ε| = 0
|ax | = 1 + |x |

Example: |01010| = 5.

Definition: The reverse function rev() : Σ∗ → Σ∗ as:

rev(ε) = ε
rev(ax) = rev(x)a

Intuitively, rev(a1 . . . an) = an . . . a1.

Note: Recall len and rev on lists.
March 23rd 2018, Lecture 4 TMV027/DIT321 15/25

Power

Of a string: We define xn as follows:

x0 = ε
xn+1 = xxn

Example: (010)3 = 010010010.

Of an alphabet: We define Σn, the set of words over Σ with length n, as
follows:

Σ0 = {ε}
Σn+1 = {ax | a ∈ Σ, x ∈ Σn}

Example: {0, 1}3 = {000, 001, 010, 011, 100, 101, 110, 111}.

Notation: Σ∗ = Σ0 ⋃Σ1 ⋃Σ2 . . . and

Σ+ = Σ1 ⋃Σ2 ⋃Σ3 . . .

March 23rd 2018, Lecture 4 TMV027/DIT321 16/25

Some Properties

The following properties can be proved by induction:
(See some of the proofs on lists in slides 6–7.)

Lemma: Concatenation is associative: ∀ x , y , z ∈ Σ∗. x(yz) = (xy)z .
We shall simply write xyz .

Lemma: ∀ x , y ∈ Σ∗. |xy | = |x |+ |y |.

Lemma: ∀ x ∈ Σ∗. xε = εx = x .

Lemma: ∀ n ∈ N.∀ x ∈ Σ∗. |xn| = n ∗ |x |.

Lemma: ∀ n ∈ N.∀Σ. |Σn| = |Σ|n.

Lemma: ∀ x , y ∈ Σ∗. rev(xy) = rev(y)rev(x).

Lemma: ∀ x ∈ Σ∗. rev(rev(x)) = x .

March 23rd 2018, Lecture 4 TMV027/DIT321 17/25

Languages

Definition: Given an alphabet Σ, a language L is a subset of Σ∗, that is,
L ⊆ Σ∗.

Note: If L ⊆ Σ∗ and Σ ⊆ ∆ then L ⊆ ∆∗.

Note: A language can be either finite or infinite.

Example: Some languages:

Swedish, English, Spanish, French, . . . ;

Any programming language;

∅, {ε} and Σ∗ are languages over any Σ;

The set of prime Natural numbers {1, 3, 5, 7, 11, . . .}.

March 23rd 2018, Lecture 4 TMV027/DIT321 18/25

Some Operations on Languages

Definition: Given L, L1 and L2 languages, we define the following
languages:

Union, Intersection, ... : As for any set.

Concatenation: L1L2 = {x1x2 | x1 ∈ L1, x2 ∈ L2}.

Closure: L∗ =
⋃

n∈N Ln where L0 = {ε}, Ln+1 = LnL.

Note: ∅∗ = {ε} and

L∗ = L0 ∪ L1 ∪ L2 ∪ . . . = {ε} ∪ {x1 . . . xn | n > 0, xi ∈ L}

Notation: L+ = L1 ∪ L2 ∪ L3 ∪ . . .

Example: Let L = {aa, b}, then
L0 = {ε}, L1 = L, L2 = LL = {aaaa, aab, baa, bb}, L3 = L2L, . . .

L∗ = {ε, aa, b, aaaa, aab, baa, bb, . . .}.

March 23rd 2018, Lecture 4 TMV027/DIT321 19/25

How to Prove the Equality of Languages?

Given the languages M and N , how can we prove that M = N ?

A few possibilities:

Languages are sets so we prove that M⊆ N and N ⊆M;

Transitivity of equality: M = L1 = . . . = Lm = N ;

We can reason about the elements in the language:

Example: {a(ba)n | n > 0} = {(ab)na | n > 0} can be proved by induction on n.

March 23rd 2018, Lecture 4 TMV027/DIT321 20/25

Algebraic Laws for Languages

All laws presented in slide 14 lecture 2 are valid.

In addition, we have all these laws on concatenation:

Associativity: L(MN) = (LM)N
Concatenation is

not commutative: LM 6=ML
Distributivity: L(M∪N) = LM∪LN (M∪N)L =ML∪NL

Identity: L{ε} = {ε}L = L
Annihilator: L∅ = ∅L = ∅

Other Rules: ∅∗ = {ε}∗ = {ε}
L+ = LL∗ = L∗L
(L∗)∗ = L∗

March 23rd 2018, Lecture 4 TMV027/DIT321 21/25

Algebraic Laws for Languages (Cont.)

Note: While

L(M∩N) ⊆ LM∩LN and (M∩N)L ⊆ML∩NL

both hold, in general

LM∩LN ⊆ L(M∩N) and ML∩NL ⊆ (M∩N)L

don’t.

Example: Consider the case where

L = {ε, a}, M = {a}, N = {aa}

Then LM∩LN = {aa} but L(M∩N) = L∅ = ∅.

March 23rd 2018, Lecture 4 TMV027/DIT321 22/25

Functions between Languages

Definition: A function f : Σ∗ → ∆∗ between 2 languages should satisfy

f (ε) = ε
f (xy) = f (x)f (y)

Intuitively, f (a1 . . . an) = f (a1) . . . f (an).

Note: f (a) ∈ ∆∗ if a ∈ Σ.

March 23rd 2018, Lecture 4 TMV027/DIT321 23/25

Overview of Next Lecture

Sections 2–2.2:

DFA: deterministic finite automata.

March 23rd 2018, Lecture 4 TMV027/DIT321 24/25

Overview of next Week

Mon 26 Tue 27 Wed 28 Thu 29 Fri 30

8-10 ES51 In-
dividual help

Ex 10-12 EA
Proofs, induc-
tion.

Lec 13-15 HB3
DFA.

Ex 15-17 EA
Proofs, induc-
tion.

15-17 EL41
Consultation

Assignment 1: Formal proofs.
Deadline: Thursday 29th March 23:59.

March 23rd 2018, Lecture 4 TMV027/DIT321 25/25

