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Recap: Logic, Sets, Relations, Functions

Propositions, truth values, connectives, predicates, quantifiers;

Sets, how to define them, membership, operations on sets, equality,
laws;

Relations, properties (reflexive, symmetric, antisymmetric, transitive,
equivalence), partial vs total order, partitions, equivalence class,
quotient;

Functions, domain, codomain, image, partial vs total, injective,
surjective, bijective, inverse, composition, restriction.
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Overview of Today’s Lecture

Formal proofs;

Simple/strong induction;

Mutual induction;

Inductively defined sets;

Recursively defined functions.

Contributes to the following learning outcome:

Prove properties of languages, grammars and automata with
rigorously formal mathematical methods.

March 22nd 2018, Lecture 3 TMV027/DIT321 2/22

How Formal Should a Proof Be?

Depends on the purpose but

Should be convincing;

Should not leave too much out;

The validity of each step should be easily understood.

Valid steps are for example:

Reduction to definition:

“x is divisible by 2” is equivalent to “∃ k > 0. x = 2k”;

Use of hypotheses;

Combining previous facts in a valid way:

“Given A⇒ B and A we can conclude B by modus ponens”.
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Form of Statements

Statements we want to prove are usually of the form

If H1 and H2 . . . and Hk︸ ︷︷ ︸
hypotheses

then C1 and . . . and Cm︸ ︷︷ ︸
conclusions

or

P1 and . . . and Pn iff Q1 and . . . and Qm

for k > 0; n,m > 1.

Note: Observe that one proves the conclusion assuming the validity of the
hypotheses!

Example: We can easily prove “if 0 = 1 then 4 = 2.000”.
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Different Kinds of Proofs

Proofs by Contradiction

If H then C

is logically equivalent to

H and not C implies “the impossible” (bottom, ⊥).

Example: If x 6= 0 then x2 6= 0 vs. x 6= 0 ∧ x2 = 0⇒⊥

Proofs by Contrapositive
“If H then C” is logically equivalent to “If not C then not H”.
See both truth tables!

Proofs by Counterexample
We find an example that “breaks” what we want to prove.

Example: All Natural numbers are odd.
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Proving a Property over the Natural Numbers

How to prove an statement over all the Natural numbers?

Example: ∀ n ∈ N. 1 + 2 + 3 + ... + n =
n ∗ (n + 1)

2
.

First we need to look at what the Natural numbers are ...

They are an inductively defined set defined by the following two rules:

0 ∈ N
n ∈ N

n + 1 ∈ N

(More on inductively defined sets on slides 17–19.)
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Mathematical/Simple Induction

base case︷︸︸︷
P(0)

inductive step︷ ︸︸ ︷

∀ n ∈ N.

IH︷︸︸︷
P(n)⇒ P(n + 1)

∀ n ∈ N.P(n)︸ ︷︷ ︸
statement to prove

More generally:

P(i),P(i + 1), . . . ,P(j) ∀ n ∈ N. j 6 n⇒ (

IH︷︸︸︷
P(n)⇒ P(n + 1))

∀ n ∈ N. i 6 n⇒ P(n)

IH ≡ inductive hypothesis
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Example: Proof by Induction

Proposition: Let f (0) = 0
f (n + 1) = f (n) + n + 1.

Then, ∀ n ∈ N. f (n) =
n ∗ (n + 1)

2
.

Proof: By mathematical induction on n.

Let P(n) be f (n) =
n ∗ (n + 1)

2
.

Base case: We prove that P(0) holds.

Inductive step: We prove that if P(n) holds (our IH) for a given 0 6 n , then P(n + 1)
also holds.

Closure: Now we have established that for all n, P(n) is true!

In particular, P(0),P(1),P(2), . . . ,P(15), . . . hold.
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Course-of-Values/Strong Induction

Variant of mathematical induction.

base case︷︸︸︷
P(0)

inductive step︷ ︸︸ ︷

∀ n ∈ N. (

IH︷ ︸︸ ︷
∀m ∈ N. 0 6 m 6 n⇒ P(m))⇒ P(n + 1)

∀ n ∈ N.P(n)︸ ︷︷ ︸
statement to prove

Or more generally:

P(i),P(i + 1), . . . ,P(j)

∀ n ∈ N. i 6 n⇒ (∀m. i 6 m 6 n⇒ P(m))⇒ P(n + 1)

∀ n ∈ N. i 6 n⇒ P(n)

Here we might have several inductive hypotheses P(m)!
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Example: Proof by Induction

Proposition: If n > 8 then n can be written as a sum of 3’s and 5’s.

Proof: By course-of-values induction on n.

Let P(n) be“n can be written as a sum of 3’s and 5’s”.

Base cases: P(8),P(9) and P(10) hold.

Inductive step: We shall prove that if P(8),P(9),P(10), . . . ,P(n) hold for n > 10 (our
IH) then P(n + 1) holds.

Then every m with 8 6 m 6 n can be written as a sum of 3’s and 5’s.

Observe that if n > 10 then n > n + 1− 3 > 8.

Hence by inductive hypothesis P(n + 1− 3) holds.

By adding an extra 3 then P(n + 1) holds as well.

Closure: ∀ n > 8. n can be written as a sum of 3’s and 5’s.

March 22nd 2018, Lecture 3 TMV027/DIT321 10/22

Example: All Horses have the Same Colour
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Example: Proof by Induction

Proposition: All horses have the same colour.

Proof: By mathematical induction on n.

Let P(n) be “in any set of n horses they all have the same colour”.

Base cases: P(0) is not interesting in this example.

P(1) is clearly true.

Inductive step: Let us show that P(n) (our IH) implies P(n + 1).

Let h1, h2, . . . , hn, hn+1 be a set of n + 1 horses.

Take h1, h2, . . . , hn. By IH they all have the same colour.

Take now h2, h3, . . . , hn, hn+1. Again, by IH they all have the same
colour.

Hence, by transitivity, all horses h1, h2, . . . , hn, hn+1 must have the same
colour.

Closure: ∀ n. all n horses in the set have the same colour.
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Example: What Went Wrong???
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Mutual Induction

Sometimes we cannot prove a single statement P(n) but rather a group of
statements P ′

1(n),P ′
2(n), . . . ,P ′

k(n) simultaneously by induction on n.

In practice we have that P(n) = P ′
1(n) ∧ P ′

2(n) ∧ . . . ∧ P ′
k(n).

This is very common in automata theory where we need to prove an statement for each

of the states in an automaton, or when we work with grammars where we need to prove

an statement for each of the variables in a grammar.
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Example: Proof by Mutual Induction

Let f , g , h : N→ {0, 1} be as follows:

f (0) = 0 g(0) = 1 h(0) = 0
f (n + 1) = g(n) g(n + 1) = f (n) h(n + 1) = 1− h(n)

Observe that the functions are defined by mutual dependency!

Proposition: ∀ n. h(n) = f (n).

Proof: If P(n) is “h(n) = f (n)” then it is not possible to prove P(n)⇒ P(n + 1).

We strengthen P(n) to P ′(n): Let P ′(n) be “h(n) = f (n) ∧ h(n) = 1− g(n)”.

By mathematical induction on n.

We prove P ′(0) : h(0) = f (0) ∧ h(0) = 1− g(0).

Then we prove that P ′(n)⇒ P ′(n + 1).

Since by induction ∀ n.P ′(n) is true then ∀ n.P(n) is also true.
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Recursive Data Types

What are (the data types of) Natural numbers, lists, trees, ... ?

This is how you would defined them in Haskell:

data Nat = Zero | Succ Nat

data List a = Nil | Cons a (List a)

data BTree a = Leaf a | Node a (BTree a) (BTree a)

They are defined in terms of themselves!

Observe the similarity between the definition of Nat above and the rules in slide 6...
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Inductively Defined Sets

Natural Numbers:

Base case: 0 is a Natural number;
Inductive step: If n is a Natural number then n + 1 is a Natural number;

Closure: There is no other way to construct Natural numbers.

Finite Lists:

Base case: [] is the empty list over any set A;
Inductive step: If x ∈ A and xs is a list over A then x : xs is a list over A;

Closure: There is no other way to construct lists.

Finitely Branching Trees:

Base case: If x ∈ A then (x) is a tree over any set A;
Inductive step: If x ∈ A and t1, . . . , tk are tree over the set A,

then (x , t1, . . . , tk) is a tree over A;

Closure: There is no other way to construct trees.

...
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Inductively Defined Sets (Cont.)

To define a set S by induction we need to specify:

Base cases: e1[. . .], . . . , em[. . .] ∈ S ;

Inductive steps: Given . . . and given s1, . . . , ski ∈ S ,
then c1[. . . , s1, . . . , sk1 ], . . . , cn[. . . , s1, . . . , skn ] ∈ S ;

Closure: There is no other way to construct elements in S .
(We will usually omit this part.)

Note: Each base element ei or each recursive element ci could also depend on other

(previously defined) sets A’s. Denoted as . . . above.

Example: See the case of lists and trees with elements of a certain type A in previous

slide.

See notes on Inductive sets and induction linked from course web page.
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Examples of Inductively Defined Sets

Example: The set of simple Boolean expressions is defined as:

Base cases: true and false are Boolean expressions;

Inductive steps: if a and b are Boolean expressions then

(a) not a a and b a or b

are also Boolean expressions.

Example: The set of simple data types:

Base cases: N, Bool and String are types;

Inductive steps: if A and B are types then

A→ B A× B A + B

are also types.
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Recursive Functions over Inductively Defined Sets

We define a (terminating) function f : S → A over an inductively defined
set where the recursive calls are on structural smaller elements as follows:

Base cases: f (e1[. . .]), . . . , f (em[. . .]) ∈ A;

We define f on all base elements.

Recursive cases: Given . . . and given s1, . . . , ski ∈ S ,

f (c1[. . . , s1, . . . , sk1 ]) = h1[. . . , f (s1), . . . , f (sk1)]
... =

...
f (cn[. . . , s1, . . . , skn ]) = hn[. . . , f (s1), . . . , f (skn)]

We define f on each “complex” element in terms of the result of f on

the structurally smaller elements!

See notes on Inductive sets and induction linked from course web page.
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Example: Recursive Functions over Lists

Recall lists are either [] (empty) or x : xs (not empty). [x ] denotes x : [].

Example: Let us (recursively) define the length of a list.

len [] = 0
len (x : xs) = 1 + len xs

Example: Let us (recursively) define the append over lists.

[] ++ ys = ys
(x : xs) ++ ys = x : (xs ++ ys)

Example: Let us (recursively) define the reverse of a list.

rev [] = []
rev (x : xs) = rev xs ++ [x ]
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Overview of Next Lecture

Chapter 5 in the Mathematics for Computer Science book, section 1.2 in
the main book, and notes on Inductive sets and induction:

Structural induction;

Concepts of automata theory.

See also even Claessen’s notes on proof methods linked from course web page.

DO NOT MISS THIS LECTURE!!!
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