Finite Automata Theory and Formal Languages TMV027/DIT321– LP4 2018

Lecture 2

Ana Bove

March 20th 2018 Overview of today's lecture:

Recap on:

- Logic;
- Sets;
- Relations;
- Functions.

Propositional Logic

Definition: A *proposition* is an statement which is either *true* (T) or *false* (F).

Example: My name is Ana.

I come from Uruguay.

I have 3 children.

I can speak 4 different languages.

It is not always known what the *truth value* of a proposition is.

Goldbach's conjecture: Every even integer greater than 2 can be expressed as the sum of two primes.

Connective and Truth Tables

We can combine propositions by using *connectives*:

- \neg : negation, not
- $\wedge:$ conjunction, and
- \lor : disjunction, or
- $\Rightarrow:$ conditional, if-then, \rightarrow
- \Leftrightarrow : equivalence, if-and-only-if, \leftrightarrow

These are their *truth tables* (observe the conditional...):

р	q	$\neg p$	$p \wedge q$	$p \lor q$	$p \Rightarrow q$	$p \Leftrightarrow q$
T	Т	F	Т	Т	Т	Т
Т	F	F	F	Т	F	F
F	Т	Т	F	Т	Т	F
F	F	T	F	F	Т	Т

March 20th 2018, Lecture 2

MV027/DIT32

Conditionals

Example: Is the following statement true?

If I come from Mars then my skin is green.

Recall truth table for conditional:

I come from Mars	my skin is green	I come from Mars \Rightarrow my skin is green
Т	Т	Т
Т	F	F
F	Т	Т
F	F	Т

I am NOT from Mars!

So the whole proposition is true!

Combined Propositions

Example: Is the following statement true?

Either you study and you pass the exam, or your don't pass the exam.

Let us construct the truth table!

Let p be "you study". Let q be "you pass the exam".

Then the sentence is expressed by $(p \land q) \lor \neg q$.

p	q	$p \wedge q$	$\neg q$	$(p \wedge q) \vee \neg q$
T	Т	Т	F	Т
T	F	F	Т	Т
F	Т	F	F	F
F	F	F	Т	Т

March 20th 2018, Lecture 2

TMV027/DIT32

4/28

Tautologies and Logical Equivalence

Definition: A proposition that is always true is called a *tautology*.

Example: The law of the excluded middle is a tautology in classical logic

р	$\neg p$	$p \lor \neg p$
Т	F	Т
F	Т	Т

Definition: Two propositions are *logically equivalent* (\equiv) if they have the same truth table.

Example: $p \Rightarrow q \equiv \neg p \lor q$:

р	q	$p \Rightarrow q$	$\neg p$	$\neg p \lor q$
Т	Т	Т	F	Т
Т	F	F	F	F
F	Т	Т	Т	Т
F	F	Т	Т	Т

Laws of (Classical) Logic

Equivalence:	$p \Leftrightarrow q \equiv (p \Rightarrow q) \land (q \Rightarrow p)$	
Implication:	$p \Rightarrow q \equiv \neg p \lor q$	
Double negation:	$ eg \neg p \equiv p$	
Idempotent:	$p \wedge p \equiv p$	$p \lor p \equiv p$
Commutative:	$m{p}\wedgem{q}\equivm{q}\wedgem{p}$	$p \lor q \equiv q \lor p$
Associative:	$(p \wedge q) \wedge r \equiv p \wedge (q \wedge r)$	
	$(p \lor q) \lor r \equiv p \lor (q \lor r)$	
Distributive:	$p \wedge (q \lor r) \equiv (p \wedge q) \lor (p \wedge r)$	
	$p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$	
de Morgan:	$ eg (ho \wedge q) \equiv eg ho ee \neg q$	$ eg (p \lor q) \equiv \neg p \land \neg q$
Identity:	$ ho \wedge T \equiv ho$	$p \lor F \equiv p$
Annihilation:	$p \wedge F \equiv F$	$p \lor T \equiv T$
Inverse:	$p \wedge \neg p \equiv F$	$p \lor \neg p \equiv T$
Absorption:	$p \wedge (p \lor q) \equiv p$	$p \lor (p \land q) \equiv p$

Exercise: Construct the truth tables and check the logical equivalences!

Statements with Variables

March 20th 2018, Lecture 2

By using variables we could talk about any element in a certain domain.

Example: Consider the following property for $x \in \mathbb{N}$ (Natural numbers):

 $x > 4 \Rightarrow x > 2$

When statements have variables we are actually working on *predicate logic*.

Reasoning in predicate logic is more complicated since variables can range over an infinite set of values.

Predicate Logic

Definition: A *predicate* is a statement with one or more variables.

When we assign values to all variable in a predicate we get a proposition.

Definition: The expressions *for all* (\forall) and *exists* (\exists) are called *quantifiers*.

Example: Express the following 2 statements in predicate logic:

- For every number x there is a number y such that x is equal to y $\forall x. \exists y. x = y$
- There is a number x such that for every number y then x is equal to y $\exists x. \forall y. x = y$

Are they the same statement?

March 20th 2018, Lecture 2

TMV027/DIT321

More Laws of (Classical) Logic

We have that

$$\neg \forall x. P(x) \equiv \exists x. \neg P(x)$$

and

$$\neg \exists x. P(x) \equiv \forall x. \neg P(x)$$

Sets

Definition: A *set* is a collection of well defined and distinct objects or elements.

A set might be finite or infinite.

Sets can be described/defined in different ways:

Enumeration: mainly finite sets, infinite sets with help of ... (not formal though) WeekDays = {Monday, Tuesday, Wednesday, Thursday, Friday, Saturday, Sunday} OddNat = {1, 3, 5, 7, ... }

Characteristic Property: OddNat = $\{x \in \mathbb{N} \mid x \text{ is odd}\}.$

Operations on Other Sets: $A \cup B$, $A \cap B$, ... (see slide 12)

Inductive Definitions: More on this next lecture ...

March 20th 2018, Lecture 2

Membership on Sets

Definition: We denote that x is an *element* of set A by $x \in A$.

It is important to determine whether $x \in A$ or $x \notin A$. However this is not always possible.

Example: Let P be the set of programs that always terminate.

Can we always be sure if a certain program $pgr \in P$?

Russell's paradox: Let $R = \{x \mid x \notin x\}$.

Then $R \in R \Leftrightarrow R \notin R!$

Some Operations and Properties on Sets

Union: $A \cup B = \{x \mid x \in A \text{ or } x \in B\}.$

Intersection: $A \cap B = \{x \mid x \in A \text{ and } x \in B\}.$

Cartesian Product: $A \times B = \{(x, y) \mid x \in A \text{ and } y \in B\}.$ Observe this is a collection of ordered pairs! $(x, y) \neq (y, x).$

Difference: $S - A = \{x \mid x \in S \text{ and } x \notin A\}.$

Complement: When the set S is known, S - A is written \overline{A} . S - A is sometimes denoted $S \setminus A$ and \overline{A} is sometimes denoted A'.

Subset: $A \subseteq B$ if for all $x \in A$ then $x \in B$.

Proper Subset: $A \subset B$ if $A \subseteq B$ and $A \neq B$.

Equality: A = B if $A \subseteq B$ and $B \subseteq A$.

March 20th 2018, Lecture 2

TMV027/DIT321

Some Particular Sets

Empty set: \emptyset is the set with no elements. We have $\emptyset \subseteq S$ for any set S.

Singleton sets: Sets with only one element: $\{p_0\}, \{p_1\}$.

Finite sets: Set with a finite number *n* of elements: $\{p_1, \ldots, p_n\} = \{p_1\} \cup \ldots \cup \{p_n\}.$

Power sets: $\mathcal{P}ow(S)$ the set of all subsets of the set S. $\mathcal{P}ow(S) = \{A \mid A \subseteq S\}.$

> Observe that $\emptyset \in \mathcal{P}ow(S)$ and $S \in \mathcal{P}ow(S)$. Also, if |S| = n then $|\mathcal{P}ow(S)| = 2^n$.

Note: $\emptyset \neq \{\emptyset\}!!$

Algebraic Laws for Sets

Idempotent:	$A \cup A = A$		$A \cap A = A$
Commutative:	$A \cup B = B \cup A$	ł	$A \cap B = B \cap A$
Associative:	$(A \cup B) \cup C =$	$A \cup (B \cup C)$	
	$(A \cap B) \cap C =$	$A \cap (B \cap C)$	
Distributive:	$A \cup (B \cap C) =$	$(A \cup B) \cap (A \cup C)$	
	$A \cap (B \cup C) =$	$(A \cap B) \cup (A \cap C)$	
de Morgan:	$\overline{(A\cup B)}=\overline{A}\cap$	\overline{B}	$\overline{(A \cap B)} = \overline{A} \cup \overline{B}$
Laws for \emptyset :	$A \cup \emptyset = A$		${\cal A}\cap \emptyset=\emptyset$
Laws for Universe:	$A \cup U = U$		$A \cap U = A$
Complements:	$\overline{\overline{A}} = A$	$A\cup \overline{A}=U$	$A\cap \overline{A}=\emptyset$
	$\overline{U} = \emptyset$	$\overline{\emptyset} = U$	
Absorption:	$A \cup (A \cap B) =$	A	$A \cap (A \cup B) = A$

Exercise: Prove the equality of the sets by showing the double inclusion!

March 20th 2018, Lecture 2

TMV027/DIT321

Relations

Definition: A (binary) *relation* R between two sets A and B is a subset of $A \times B$, that is, $R \subseteq A \times B$.

Notation: $(a, b) \in R$, a R b, R(a, b), (a, b) satisfies R.

Definition: A relation *R* over a set *S*, that is $R \subseteq S \times S$, is

Reflexive if $\forall a \in S$. a R a;

Symmetric if $\forall a, b \in S$. $a R b \Rightarrow b R a$;

Transitive if $\forall a, b, c \in S$. $a R b \land b R c \Rightarrow a R c$.

Definition: If S has an equality relation $= \subseteq S \times S$ and $R \subseteq S \times S$ then R is antisymmetric if $\forall a, b \in S$. $a R b \land b R a \Rightarrow a = b$.

Example of Relations

```
Let S = \{1, 2, 3\} and let = \subseteq S \times S be as expected.
Which of these relations are reflexive, symmetric, antisymmetric, and/or transitive?
```

Play at kahoot.it!

• $R_1 = \emptyset$ Symmetric, Antisymmetric, Transitive • $R_2 = \{(1,2)\}$ Antisymmetric, Transitive • $R_3 = \{(1,2), (2,3)\}$ Antisymmetric • $R_4 = \{(1,2), (2,3), (1,3)\}$ Antisymmetric, Transitive • $R_5 = \{(1,2), (2,1)\}$ Symmetric • $R_6 = \{(1,2), (2,1), (1,1)\}$ Symmetric • $R_7 = \{(1,2), (2,1), (1,1), (2,2)\}$ Symmetric, Transitive • $R_8 = \{(1,2), (2,1), (1,1), (2,2), (3,3)\}$ Reflexive, Symm, Trans

March 20th 2018, Lecture 2

TMV027/DIT32

16/28

Equivalent Relations and Orders

Definition: A relation *R* over a set *S* that is *reflexive, symmetric* and *transitive* is called an *equivalence relation* over *S*.

Example: = is an equivalence over \mathbb{N} .

Definition: A relation R over a set S that is reflexive, antisymmetric and transitive is called a *partial order* over S.

Example: \leqslant is a partial order over $\mathbb N$ but and < not!

Definition: A relation *R* over a set *S* is called a *total order* over *S* if:

- R is a partial order;
- $\forall a, b \in S$. $a R b \lor b R a$.

Example: \leq is a total order over \mathbb{N} .

Partitions

Definition: A set *P* is a *partition* over the set *S* if:

• Every element of P is a non-empty subset of S

 $\forall C \in P. \ C \neq \emptyset \land C \subseteq S;$

• Elements of *P* are pairwise disjoint

$$\forall C_1, C_2 \in P. \ C_1 \neq C_2 \Rightarrow C_1 \cap C_2 = \emptyset;$$

• The union of the elements of P is equal to S

$$\bigcup_{C\in P} C=S.$$

March 20th 2018, Lecture 2

TMV027/DIT321

Equivalent Classes

Let R be an equivalent relation over S.

Definition: If $a \in S$, then the *equivalent class* of a in S is the set defined as $[a] = \{b \in S \mid a R b\}$.

Lemma: $\forall a, b \in S$, [a] = [b] iff a R b.

Theorem: The set of all equivalence classes in S w.r.t. R form the *quotient* partition over S.

Notation: This partition is denoted as S/R.

Example: The rational numbers \mathbb{Q} can be formally defined as the equivalence classes of the quotient set $\mathbb{Z} \times \mathbb{Z}^+ / \sim$, where \sim is the equivalence relation defined by $(m_1, n_1) \sim (m_2, n_2)$ iff $m_1 n_2 =_{\mathbb{Z}} m_2 n_1$.

Functions

Definition: A *function* f from A to B is a relation $f \subseteq A \times B$ such that, given $x \in A$ and $y, z \in B$, if x f y and x f z then y = z.

Notation: If f is a function from A to B we write $f : A \rightarrow B$.

Notation: That x f y is usually written as f(x) = y.

Example: sq : $\mathbb{Z} \to \mathbb{N}$ such that sq $(n) = n^2$.

Observe that sq(2) = 4 and sq(-2) = 4.

March 20th 2018, Lecture 2

TMV027/DIT32

Domain, Codomain, Range and Image

Let $f : A \rightarrow B$.

Definition: The sets *A* and *B* are called the *domain* and the *codomain* of the function, respectively.

Definition: The set Dom(f) or Dom_f for which the *function is defined* is given by $\{x \in A \mid \exists y \in B.f(x) = y\} \subseteq A$.

We will also refer to Dom(f) as the domain of f.

Definition: The set $\{y \in B \mid \exists x \in A. f(x) = y\} \subseteq B$ is called the *range* or *image* of f and denoted Im(f) or Im_f .

Example: The image of sq is NOT all \mathbb{N} but $\{0, 1, 4, 9, 16, 25, 36, \ldots\}$.

Total and Partial Functions

Let $f : A \rightarrow B$.

Definition: If Dom(f) = A then f is called a *total* function.

Example: sq is a total function.

Definition: If $Dom(f) \subset A$ then f is called a *partial* function.

Example: sqr : $\mathbb{N} \to \mathbb{N}$ such that sqr $(n) = \sqrt{n}$ is a partial function.

Note: In some cases it is not known if a function is partial or total.

Example: It is not known if collatz : $\mathbb{N} \to \mathbb{N}$ is total or not.

$collatz(0) = 1 \ collatz(1) = 1$	$ ext{collatz}(n) = \left\{egin{array}{c} ext{collatz}(n/2) \ ext{collatz}(3n+1) \end{array} ight.$	if <i>n</i> even if <i>n</i> odd
8, Lecture 2	TMV027/DIT321	

Injective or One-to-one Functions

Let $f : A \rightarrow B$.

March 20th 2018

Definition: f is called an *injective* or *one-to-one* function if $\forall x, y \in A.f(x) = f(y) \Rightarrow x = y.$

Alternatively:

Definition: f is called an *injective* or *one-to-one* function if $\forall x, y \in A.x \neq y \Rightarrow f(x) \neq f(y)$.

Exercise: Prove that double : $\mathbb{N} \to \mathbb{N}$ such that double(n) = 2n is injective.

The Pigeonhole Principle

"If you have more pigeons than pigeonholes and each pigeon flies into some pigeonhole, then there must be at least one hole with more than one pigeon."

More formally: if $f : A \to B$ and $|\text{Dom}_f(A)| > |B|$ then f cannot be *injective*.

That is, there must exist $x, y \in A$ such that $x \neq y$ and f(x) = f(y).

This principle is often used to show the existence of an object without building this object explicitly.

Example: In a room with at least 13 people, at least 2 of them are born the same month.

March 20th 2018, Lecture 2

TMV027/DIT32

Surjective or Onto Functions

Let $f : A \rightarrow B$.

Definition: f is called an *surjective* or *onto* function if $\forall y \in B. \exists x \in A. f(x) = y.$

Note: If f is surjective then Im(f) = B.

Exercise: Prove that $f : \mathbb{R} \to \mathbb{R}$ such that f(n) = 2n + 1 is surjective.

Bijective and Inverse Functions

Definition: A function that is both injective and surjective is called a *bijective* function.

Definition: If $f : A \to B$ is a bijective function, then there exists an *inverse* function $f^{-1} : B \to A$ such that $\forall x \in A.f^{-1}(f(x)) = x$ and $\forall y \in B.f(f^{-1}(y)) = y$.

Exercise: Is $g : \mathbb{Z} \to \mathbb{Z}$ such that g(n) = 2n + 1 bijective?

Exercise: Which is the inverse of $f : \mathbb{R} \to \mathbb{R}$ such that f(n) = 2n + 1?

Lemma: If $f : A \to B$ is a bijective function, then $f^{-1} : B \to \text{Dom}_f(A)$ is also bijective.

March 20th 2018, Lecture 2

TMV027/DIT32

26/28

Composition and Restriction

Definition: Let $f : A \to B$ and $g : B \to C$. The *composition* $g \circ f : A \to C$ is defined as $g \circ f(x) = g(f(x))$.

Note: We need that $Im(f) \subseteq Dom(g)$ for the composition to be defined.

Example: If $f : \mathbb{Z} \to \mathbb{Z}$ is such that f(n) = 3n - 2 and $g : \mathbb{R} \to \mathbb{R}$ is such that g(m) = m/2, then $g \circ f : \mathbb{Z} \to \mathbb{R}$ is $g \circ f(x) = (3x - 2)/2$.

Definition: Let $f : A \to B$ and $S \subset A$. The *restriction* of f to S is the function $f_{|S} : S \to B$ such that $f_{|S}(x) = f(x), \forall x \in S$.

Overview of Next Lecture

Sections 1.2–1.4 in the main book, chapters 1 and 5 in the *Mathematics for Computer Science* book, and notes on *Inductive sets and induction*:

- Formal Proofs;
- Simple/Strong Induction;
- Mutual induction;
- Inductively defined sets;
- Recursively defined functions.

See also even Claessen's notes on proof methods linked from course web page.

DO NOT MISS THIS LECTURE!!!

March 20th 2018, Lecture 2

MV027/DIT321

28/28