Finite Automata Theory and Formal Languages TMV027/DIT321- LP4 2018

Lecture 14

Ana Bove

May 14th 2018

Recap: Context-free Grammars

- Simplification of grammars:
- Elimination of ϵ-productions;
- Elimination of unit productions;
- Elimination of useless symbols:
- Elimination of non-generating symbols;
- Elimination of non-reachable symbols;
- Chomsky normal forms: rules of the form $A \rightarrow a$ or $A \rightarrow B C$.

Overview of Today's Lecture

- Regular grammars;
- Chomsky hierarchy;
- Pumping lemma for CFL;
- Closure properties of CFL;
- Decision properties of CFL;

Contributes to the following learning outcome:

- Explain and manipulate the diff. concepts in automata theory and formal lang;
- Understand the power and the limitations of regular lang and context-free lang;
- Design automata, regular expressions and context-free grammars accepting or generating a certain language;
- Describe the language accepted by an automata or generated by a regular expression or a context-free grammar;
- Determine if a certain word belongs to a language;
- Differentiate and manipulate formal descriptions of lang, automata and grammars.

Regular Grammars

Definition: A grammar where all rules are of the form $A \rightarrow a B$ or $A \rightarrow \epsilon$ is called left regular.

Definition: A grammar where all rules are of the form $A \rightarrow B$ a or $A \rightarrow \epsilon$ is called right regular.

Note: We will see that regular grammars generate the regular languages.

Example: Regular Grammars

A DFA that generates the language over $\{0,1\}$ with an even number of 0 's:

Exercise: What could the left regular grammar be for this language?
Let q_{0} be the start variable.

$$
\begin{aligned}
& q_{0} \rightarrow \epsilon\left|0 q_{1}\right| 1 q_{0} \\
& q_{1} \rightarrow 0 q_{0} \mid 1 q_{1}
\end{aligned}
$$

Example: Regular Grammars

Consider the following DFA over $\{0,1\}$:

Exercise: What could the left regular grammar be for this language?
Let q_{0} be the start variable.

$$
\begin{gathered}
q_{0} \rightarrow 0 q_{1}\left|1 q_{0} \quad q_{1} \rightarrow 0 q_{1}\right| 1 q_{2} \quad q_{2} \rightarrow \epsilon\left|0 q_{1}\right| 1 q_{2} \\
q_{0} \Rightarrow 1 q_{0} \Rightarrow 10 q_{1} \Rightarrow 100 q_{1} \Rightarrow 1001 q_{2} \Rightarrow 10010 q_{1} \Rightarrow 100101 q_{2} \Rightarrow 100101
\end{gathered}
$$

Exercise: What could the right regular grammar be for this language?
Let q_{2} be the start variable.

$$
\begin{gathered}
q_{0} \rightarrow \epsilon\left|q_{0} 1 \quad q_{1} \rightarrow q_{0} 0\right| q_{1} 0\left|q_{2} 0 \quad q_{2} \rightarrow q_{1} 1\right| q_{2} 1 \\
q_{2} \Rightarrow q_{1} 1 \Rightarrow q_{2} 01 \Rightarrow q_{1} 101 \Rightarrow q_{1} 0101 \Rightarrow q_{0} 00101 \Rightarrow q_{0} 100101 \Rightarrow 100101
\end{gathered}
$$

Regular Languages and Context-Free Languages

Theorem: If \mathcal{L} is a regular language then \mathcal{L} is context-free.

Proof: If \mathcal{L} is a regular language then $\mathcal{L}=\mathcal{L}(D)$ for a DFA D.
Let $D=\left(Q, \Sigma, \delta, q_{0}, F\right)$.
We define a CFG $G=\left(Q, \Sigma, \mathcal{R}, q_{0}\right)$ where \mathcal{R} is the set of productions:

- $p \rightarrow$ aq if $\delta(p, a)=q$
- $p \rightarrow \epsilon$ if $p \in F$

We must prove that

- $p \Rightarrow^{*}$ wq iff $\hat{\delta}(p, w)=q$ and
- $p \Rightarrow^{*} w$ iff $\hat{\delta}(p, w) \in F$.

Then, in particular $w \in \mathcal{L}(G)$ iff $w \in \mathcal{L}(D)$.

Regular Languages and Context-Free Languages

We prove by mathematical induction on $|w|$ that

- $\forall p, q \cdot p \Rightarrow^{*} w q$ iff $\hat{\delta}(p, w)=q$ and
- $\forall p . p \Rightarrow^{*} w$ iff $\hat{\delta}(p, w) \in F$.

Base case: If $|w|=0$ then $w=\epsilon$.
Given the rules in the grammar, $p \Rightarrow^{*} q$ only when $p=q$ and $p \Rightarrow^{*} \epsilon$ only when $p \rightarrow \epsilon$.
We have $\hat{\delta}(p, \epsilon)=p$ by definition of $\hat{\delta}$ and $p \in F$ by the way we defined the grammar.
Inductive step: Suppose $|w|=n+1$, then $w=a v$.
Then $\hat{\delta}(p, a v)=\hat{\delta}(\delta(p, a), v)$ with $|v|=n$.
By IH $\delta(p, a) \Rightarrow^{*} v q$ iff $\hat{\delta}(\delta(p, a), v)=q$.
By construction we have a rule $p \rightarrow a \delta(p, a)$.
Then $p \Rightarrow a \delta(p, a) \Rightarrow^{*} \operatorname{avq}$ iff $\hat{\delta}(p, a v)=\hat{\delta}(\delta(p, a), v)=q$.
By $\mathrm{IH} \delta(p, a) \Rightarrow^{*} v$ iff $\hat{\delta}(\delta(p, a), v) \in F$.
Now $p \Rightarrow a \delta(p, a) \Rightarrow^{*} a v$ iff $\hat{\delta}(p, a v)=\hat{\delta}(\delta(p, a), v) \in F$.

Chomsky Hierarchy

This hierarchy of grammars was described by Noam Chomsky in 1956:

> Type 0: Unrestricted grammars
> Rules are of the form $\alpha \rightarrow \beta, \alpha$ must be non-empty.
> They generate exactly all languages that can be recognised by a Turing machine;

Type 1: Context-sensitive grammars

Rules are of the form $\alpha A \beta \rightarrow \alpha \gamma \beta$.
α and β may be empty, but γ must be non-empty;

Type 2: Context-free grammars

Rules are of the form $A \rightarrow \alpha, \alpha$ can be empty.
Used to produce the syntax of most programming languages;

$$
\begin{aligned}
\text { Type 3: } & \text { Regular grammars } \\
& \text { Rules are of the form } A \rightarrow B a, A \rightarrow a B \text { or } A \rightarrow \epsilon .
\end{aligned}
$$

We have that Type $3 \subset$ Type $2 \subset$ Type $1 \subset$ Type 0 .
May 14th 2018, Lecture 14

Pumping Lemma for Left Regular Languages

Let $G=(V, T, \mathcal{R}, S)$ be a left regular grammar and let $n=|V|$.

If $a_{1} a_{2} \ldots a_{m} \in \mathcal{L}(G)$ for $m>n$, then any derivation

$$
S \Rightarrow a_{1} A_{1} \Rightarrow a_{1} a_{2} A_{2} \Rightarrow \ldots \Rightarrow a_{1} \ldots a_{i} A \Rightarrow \ldots \Rightarrow a_{1} \ldots a_{j} A \Rightarrow \ldots \Rightarrow a_{1} \ldots a_{m}
$$

has length m and there is at least one variable A which is used twice.
(Pigeon-hole principle)

If $x=a_{1} \ldots a_{i}, y=a_{i+1} \ldots a_{j}$ and $z=a_{j+1} \ldots a_{m}$, we have $|x y| \leqslant n$ and $x y^{k} z \in \mathcal{L}(G)$ for all k.

Pumping Lemma for Context-Free Languages

Theorem: Let \mathcal{L} be a context-free language.
Then, there exists a constant $n-w h i c h ~ d e p e n d s ~ o n ~ \mathcal{L}$-such that for every $w \in \mathcal{L}$ with $|w| \geqslant n$, it is possible to break w into 5 strings x, u, y, v and z such that $w=x u y v z$ and
(1) $|u y v| \leqslant n$;
(2) $u v \neq \epsilon$, that is, either u or v is not empty;
(3) $\forall k \geqslant 0 . x u^{k} y v^{k} z \in \mathcal{L}$.

Proof: (Sketch)
We can assume that the language is presented by a grammar in Chomsky Normal Form, working with $\mathcal{L}-\{\epsilon\}$.

Observe that parse trees for grammars in CNF have at most 2 children.
Note: If $m+1$ is the height of a parse tree for w, then $|w| \leqslant 2^{m}$.
(Prove this as an exercise!)

Proof Sketch: Pumping Lemma for Context-Free Languages

Let $|V|=m>0$. Take $n=2^{m}$ and w such that $|w| \geqslant 2^{m}$.
Any parse tree for w has a path from root to leave of length at least $m+1$.
Let $A_{0}, A_{1} \ldots, A_{k}$ be the variables in the path. We have $k \geqslant m$.
Then at least 2 of the last $m+1$ variables should be the same, say A_{i} and A_{j}.

Observe figures 7.6 and 7.7 in pages 282-283.

See Theorem 7.18 in the book for the complete proof.

Example: Pumping Lemma for Context-Free Languages

Lemma: The language $\mathcal{L}=\left\{a^{m} b^{m} c^{m} \mid m>0\right\}$ is not context-free.

Proof: Let us assume \mathcal{L} is context-free. Then the Pumping lemma must apply.
Let n be the constant stated by the Pumping lemma.
Let $w=a^{n} b^{n} c^{n} \in \mathcal{L}$; we have that $|w| \geqslant n$.
By the lemma we know that $w=x u y v z$ such that

$$
|u y v| \leqslant n \quad u v \neq \epsilon \quad \forall k \geqslant 0 . x u^{k} y v^{k} z \in \mathcal{L}
$$

Since $|u y v| \leqslant n$ there is one letter $d \in\{a, b, c\}$ that does not occur in uyv.
Since $u v \neq \epsilon$ there is another letter $e \in\{a, b, c\}, e \neq d$ that does occur in $u v$.
Then e has more occurrences than d in $x u^{2} y v^{2} z$ and this contradicts the fact that $x u^{2} y v^{2} z \in \mathcal{L}$.

Hence \mathcal{L} cannot be a context-free language.

Closure under Union

Theorem: Let $G_{1}=\left(V_{1}, T, \mathcal{R}_{1}, S_{1}\right)$ and $G_{2}=\left(V_{2}, T, \mathcal{R}_{2}, S_{2}\right)$ be CFG. Then $\mathcal{L}\left(G_{1}\right) \cup \mathcal{L}\left(G_{2}\right)$ is a context-free language.

Proof: Let us assume $V_{1} \cap V_{2}=\emptyset$ (easy to get via renaming).
Let S be a fresh variable.
We construct $G=\left(V_{1} \cup V_{2} \cup\{S\}, T, \mathcal{R}_{1} \cup \mathcal{R}_{2} \cup\left\{S \rightarrow S_{1} \mid S_{2}\right\}, S\right)$.

It is now easy to see that $\mathcal{L}(G)=\mathcal{L}\left(G_{1}\right) \cup \mathcal{L}\left(G_{2}\right)$ since a derivation will have the form

$$
S \Rightarrow S_{1} \Rightarrow^{*} w \text { if } w \in \mathcal{L}\left(G_{1}\right)
$$

or

$$
S \Rightarrow S_{2} \Rightarrow^{*} w \text { if } w \in \mathcal{L}\left(G_{2}\right)
$$

Closure under Concatenation

Theorem: Let $G_{1}=\left(V_{1}, T, \mathcal{R}_{1}, S_{1}\right)$ and $G_{2}=\left(V_{2}, T, \mathcal{R}_{2}, S_{2}\right)$ be CFG. Then $\mathcal{L}\left(G_{1}\right) \mathcal{L}\left(G_{2}\right)$ is a context-free language.

Proof: Again, let us assume $V_{1} \cap V_{2}=\emptyset$.
Let S be a fresh variable.
We construct $G=\left(V_{1} \cup V_{2} \cup\{S\}, T, \mathcal{R}_{1} \cup \mathcal{R}_{2} \cup\left\{S \rightarrow S_{1} S_{2}\right\}, S\right)$.

It is now easy to see that $\mathcal{L}(G)=\mathcal{L}\left(G_{1}\right) \mathcal{L}\left(G_{2}\right)$ since a derivation will have the form

$$
S \Rightarrow S_{1} S_{2} \Rightarrow^{*} u v
$$

with

$$
S_{1} \Rightarrow^{*} u \text { and } S_{2} \Rightarrow^{*} v
$$

for $u \in \mathcal{L}\left(G_{1}\right)$ and $v \in \mathcal{L}\left(G_{2}\right)$.

Closure under Closure

Theorem: Let $G=(V, T, \mathcal{R}, S)$ be a $C F G$.
Then $\mathcal{L}(G)^{+}$and $\mathcal{L}(G)^{*}$ are context-free languages.

Proof: Let S^{\prime} be a fresh variable.
We construct $G+=\left(V \cup\left\{S^{\prime}\right\}, T, \mathcal{R} \cup\left\{S^{\prime} \rightarrow S \mid S S^{\prime}\right\}, S^{\prime}\right)$ and

$$
G *=\left(V \cup\left\{S^{\prime}\right\}, T, \mathcal{R} \cup\left\{S^{\prime} \rightarrow \epsilon \mid S S^{\prime}\right\}, S^{\prime}\right) .
$$

It is easy to see that $S^{\prime} \Rightarrow \epsilon$ in $G *$.
Also that $S^{\prime} \Rightarrow^{*} S \Rightarrow^{*} w$ if $w \in \mathcal{L}(G)$ is a valid derivation both in $G+$ and in $G *$.
In addition, if $w_{1}, \ldots, w_{k} \in \mathcal{L}(G)$, it is easy to see that the derivation

$$
\begin{aligned}
S^{\prime} & \Rightarrow S S^{\prime} \Rightarrow^{*} w_{1} S^{\prime} \Rightarrow w_{1} S S^{\prime} \Rightarrow^{*} w_{1} w_{2} S^{\prime} \Rightarrow^{*} \ldots \\
& \Rightarrow w_{1} w_{2} \ldots w_{k-1} S^{\prime} \Rightarrow^{*} w_{1} w_{2} \ldots w_{k-1} S \Rightarrow^{*} w_{1} w_{2} \ldots w_{k-1} w_{k}
\end{aligned}
$$

is a valid derivation both in $G+$ and in $G *$.

Non Closure under Intersection

Example: Consider the following languages over $\{a, b, c\}$:

$$
\begin{aligned}
& \mathcal{L}_{1}=\left\{a^{k} b^{k} c^{m} \mid k, m>0\right\} \\
& \mathcal{L}_{2}=\left\{a^{m} b^{k} c^{k} \mid k, m>0\right\}
\end{aligned}
$$

It is easy to give CFG generating both \mathcal{L}_{1} and \mathcal{L}_{2}, hence \mathcal{L}_{1} and \mathcal{L}_{2} are CFL.

However $\mathcal{L}_{1} \cap \mathcal{L}_{2}=\left\{a^{k} b^{k} c^{k} \mid k>0\right\}$ is not a CFL (see slide 12).

Closure under Intersection with Regular Language

Theorem: If \mathcal{L} is a $C F L$ and \mathcal{P} is a $R L$ then $\mathcal{L} \cap \mathcal{P}$ is a $C F L$.

Proof: See Theorem 7.27 in the book.
(It uses push-down automata which we have not seen.)

Example: Consider the following language over $\Sigma=\{0,1\}$:

$$
\mathcal{L}=\left\{w w \mid w \in \Sigma^{*}\right\}
$$

Is \mathcal{L} a regular language?
Consider $\mathcal{L}^{\prime}=\mathcal{L} \cap \mathcal{L}\left(0^{*} 1^{*} 0^{*} 1^{*}\right)=\left\{0^{n} 1^{m} 0^{n} 1^{m} \mid n, m \geqslant 0\right\}$.
\mathcal{L}^{\prime} is not a CFL (see additional exercise 4 in exercises for CFL).
Hence \mathcal{L} cannot be a CFL since $\mathcal{L}\left(0^{*} 1^{*} 0^{*} 1^{*}\right)$ is a RL .

Non Closure under Complement

Theorem: CFL are not closed under complement.

Proof: Notice that

$$
\mathcal{L}_{1} \cap \mathcal{L}_{2}=\overline{\overline{\mathcal{L}_{1}}} \cup \overline{\mathcal{L}_{2}}
$$

If CFL are closed under complement then they should be closed under intersection (since they are closed under union).

Then CFL are in general not closed under complement.

Closure under Difference?

Theorem: CFL are not closed under difference.

Proof: Let \mathcal{L} be a CFL over Σ.
It is easy to give a CFG that generates Σ^{*}.
Observe that $\overline{\mathcal{L}}=\Sigma^{*}-\mathcal{L}$.
Then if CFL are closed under difference they would also be closed under complement.

Theorem: If \mathcal{L} is a $C F L$ and \mathcal{P} is a $R L$ then $\mathcal{L}-\mathcal{P}$ is a $C F L$.

Proof: Observe that $\overline{\mathcal{P}}$ is a RL and $\mathcal{L}-\mathcal{P}=\mathcal{L} \cap \overline{\mathcal{P}}$.

Closure under Reversal and Prefix

Theorem: If \mathcal{L} is a $C F L$ then so is $\mathcal{L}^{r}=\{\operatorname{rev}(w) \mid w \in \mathcal{L}\}$.

Proof: Given a CFG $G=(V, T, \mathcal{R}, S)$ for \mathcal{L} we construct the grammar $G^{r}=\left(V, T, \mathcal{R}^{r}, S\right)$ where \mathcal{R}^{r} is such that, for each rule $A \rightarrow \alpha$ in \mathcal{R}, then $A \rightarrow \operatorname{rev}(\alpha)$ is in \mathcal{R}^{r}.

One should show by induction on the length of the derivations in G and G^{r} that $\mathcal{L}\left(G^{r}\right)=\mathcal{L}^{r}$.

Theorem: If \mathcal{L} is a $C F L$ then so is $\operatorname{Prefix}(\mathcal{L})$.

Proof: For closure under prefix see exercise 7.3 .1 part a) in the book.

Decision Properties of Context-Free Languages

Very little can be answered when it comes to CFL.
The major tests we can answer are whether:

- The language is empty;
(See the algorithm that tests for generating symbols in slide 4 lecture 13:
if \mathcal{L} is a CFL given by a grammar with start variable S, then \mathcal{L} is empty if S is not generating.)
- A certain string belongs to the language.

Testing Membership in a Context-Free Language

Checking if $w \in \mathcal{L}(G)$, where $|w|=n$, by trying all productions may be exponential on n.

An efficient way to check for membership in a CFL is based on the idea of dynamic programming.
(Method for solving complex problems by breaking them down into simpler problems, applicable mainly to problems where many of their subproblems are really the same; not to be confused with the divide and conquer strategy.)

The algorithm is called the CYK algorithm after the 3 people who independently discovered the idea: Cock, Younger and Kasami.

It is a $O\left(n^{3}\right)$ algorithm.

Example: CYK Algorithm

Consider the following grammar in CNF given by the rules

$$
S \rightarrow A B|B A \quad A \rightarrow A S| a \quad B \rightarrow B S \mid b
$$

and starting symbol S.
Does abba belong to the language generated by the grammar?

We fill the corresponding table:

$\{S\}_{a b b a}$			
$\emptyset_{a b b}$	$\{B\}_{b b a}$		
$\{S\}_{a b}$	$\emptyset_{b b}$	$\{S\}_{b a}$	
$\{A\}_{a}$	$\{B\}_{b}$	$\{B\}_{b}$	$\{A\}_{a}$
a	b	b	a

Then $S \Rightarrow^{*}$ abba.

The CYK Algorithm

Let $G=(V, T, \mathcal{R}, S)$ be a CFG in CNF and $w=a_{1} a_{2} \ldots a_{n} \in T^{*}$.
Does $w \in \mathcal{L}(G)$?

In the CYK algorithm we fill a table

$$
\begin{array}{|cccccc}
V_{1 n} & & & & & \\
V_{1(n-1)} & V_{2 n} & & & & \\
\vdots & \vdots & & & & V_{(n-1) n} \\
V_{12} & V_{23} & V_{34} & \ldots & \\
V_{11} & V_{22} & V_{33} & \ldots & V_{(n-1)(n-1)} & V_{n n} \\
\hline a_{1} & a_{2} & a_{3} & \ldots & a_{n-1} & a_{n}
\end{array}
$$

where $V_{i j} \subseteq V$ is the set of A 's such that $A \Rightarrow^{*} a_{i} a_{i+1} \ldots a_{j}$.

We want to know if $S \in V_{1 n}$, hence $S \Rightarrow^{*} a_{1} a_{2} \ldots a_{n}$.

CYK Algorithm: Observations

- Each row corresponds to the substrings of a certain length:
- bottom row is length 1 ,
- second from bottom is length 2 ,
- ...
- top row is length n;
- We work row by row upwards and compute the $V_{i j}$'s;
- In the bottom row we have $i=j$, that is, ways of generating a_{i};
- $V_{i j}$ is the set of variables generating $a_{i} a_{i+1} \ldots a_{j}$ of length $j-i+1$ (hence, $V_{i j}$ is in row $j-i+1$);
- In the rows below that of $V_{i j}$ we have all ways to generate shorter strings, including all prefixes and suffixes of $a_{i} a_{i+1} \ldots a_{j}$.

CYK Algorithm: Table Filling

We compute $V_{i j}$ as follows (remember we work with a CFG in CNF):
Base case: First row in the table. Here $i=j$.
Then $V_{i i}=\left\{A \mid A \rightarrow a_{i} \in \mathcal{R}\right\}$.

Recursive step: To compute $V_{i j}$ for $i<j$ we have all $V_{p q}$'s in rows below.
The length of the string is at least 2 , so $A \Rightarrow^{*} a_{i} a_{i+1} \ldots a_{j}$
starts with $A \Rightarrow B C$ such that

$$
\begin{aligned}
& B \Rightarrow^{*} a_{i} a_{i+1} \ldots a_{k} \text { and } \\
& C \Rightarrow^{*} a_{k+1} \ldots a_{j} \text { for some } k .
\end{aligned}
$$

So $A \in V_{i j}$ if $\exists k, i \leqslant k<j$ such that

- $B \in V_{i k}$ and $C \in V_{(k+1) j}$;
- $A \rightarrow B C \in \mathcal{R}$.

We need to look at
$\left(V_{i i}, V_{(i+1) j}\right),\left(V_{i(i+1)}, V_{(i+2) j}\right), \ldots,\left(V_{i(j-1)}, V_{j j}\right)$.

Example: CYK Algorithm

Consider the grammar given by the rules

$$
\begin{array}{ll}
S \rightarrow X Y & X \rightarrow X A|a| b \\
Y \rightarrow A Y \mid a & A \rightarrow a
\end{array}
$$

and starting symbol S.
Does babaa belong to the language generated by the grammar?
We fill the corresponding table:

$S \notin V_{15}$ then $S \not \#^{*}$ babaa.

Undecidable Problems for Context-Free Grammars/Languages

Definition: An undecidable problem is a decision problem for which it is impossible to construct a single algorithm that always leads to a correct yes-or-no answer.

Example: Halting problem: does this program terminate?

The following problems are undecidable:

- Is the CFG G ambiguous?
- Is the CFL \mathcal{L} inherently ambiguous?
- If $\mathcal{L}\left(G_{1}\right)$ and $\mathcal{L}\left(G_{2}\right)$ are $C F L$, is $\mathcal{L}\left(G_{1}\right) \cap \mathcal{L}\left(G_{2}\right)=\emptyset$?
- If $\mathcal{L}\left(G_{1}\right)$ and $\mathcal{L}\left(G_{2}\right)$ are CFL , is $\mathcal{L}\left(G_{1}\right)=\mathcal{L}\left(G_{2}\right)$? is $\mathcal{L}\left(G_{1}\right) \subseteq \mathcal{L}\left(G_{2}\right)$?
- If $\mathcal{L}(G)$ is a $C F L$ and \mathcal{P} a RL , is $\mathcal{P}=\mathcal{L}(G)$? is $\mathcal{P} \subseteq \mathcal{L}(G)$?
- If $\mathcal{L}(G)$ is a CFL over Σ, is $\mathcal{L}(G)=\Sigma^{*}$?

Overview of Next Lecture

Sections 6, 8 (just a bit of both):

- Push-down automata;
- Turing machines.

