
Finite Automata Theory and Formal Languages

TMV027/DIT321– LP4 2018

Lecture 14

Ana Bove

May 14th 2018

Recap: Context-free Grammars

Simplification of grammars:

Elimination of ǫ-productions;

Elimination of unit productions;

Elimination of useless symbols:

Elimination of non-generating symbols;

Elimination of non-reachable symbols;

Chomsky normal forms: rules of the form A → a or A → BC .

May 14th 2018, Lecture 14 TMV027/DIT321 1/29

Overview of Today’s Lecture

Regular grammars;

Chomsky hierarchy;

Pumping lemma for CFL;

Closure properties of CFL;

Decision properties of CFL;

Contributes to the following learning outcome:

Explain and manipulate the diff. concepts in automata theory and formal lang;

Understand the power and the limitations of regular lang and context-free lang;

Design automata, regular expressions and context-free grammars accepting or
generating a certain language;

Describe the language accepted by an automata or generated by a regular
expression or a context-free grammar;

Determine if a certain word belongs to a language;

Differentiate and manipulate formal descriptions of lang, automata and grammars.

May 14th 2018, Lecture 14 TMV027/DIT321 2/29

Regular Grammars

Definition: A grammar where all rules are of the form A → aB or A → ǫ
is called left regular.

Definition: A grammar where all rules are of the form A → Ba or A → ǫ
is called right regular.

Note: We will see that regular grammars generate the regular languages.

May 14th 2018, Lecture 14 TMV027/DIT321 3/29

Example: Regular Grammars

A DFA that generates the language over {0, 1} with an even number of 0’s:

q0 q1

0

0

1

1

Exercise: What could the left regular grammar be for this language?

Let q0 be the start variable.

q0 → ǫ | 0q1 | 1q0
q1 → 0q0 | 1q1

May 14th 2018, Lecture 14 TMV027/DIT321 4/29

Example: Regular Grammars

Consider the following
DFA over {0, 1}:

q0 q1 q2
0

1

0

1 0 1

Exercise: What could the left regular grammar be for this language?

Let q0 be the start variable.

q0 → 0q1 | 1q0 q1 → 0q1 | 1q2 q2 → ǫ | 0q1 | 1q2
q0 ⇒ 1q0 ⇒ 10q1 ⇒ 100q1 ⇒ 1001q2 ⇒ 10010q1 ⇒ 100101q2 ⇒ 100101

Exercise: What could the right regular grammar be for this language?
Let q2 be the start variable.

q0 → ǫ | q01 q1 → q00 | q10 | q20 q2 → q11 | q21
q2 ⇒ q11 ⇒ q201 ⇒ q1101 ⇒ q10101 ⇒ q000101 ⇒ q0100101 ⇒ 100101

May 14th 2018, Lecture 14 TMV027/DIT321 5/29

Regular Languages and Context-Free Languages

Theorem: If L is a regular language then L is context-free.

Proof: If L is a regular language then L = L(D) for a DFA D .

Let D = (Q,Σ, δ,q0,F).

We define a CFG G = (Q,Σ,R, q0) where R is the set of productions:

p → aq if δ(p, a) = q

p → ǫ if p ∈ F

We must prove that

p ⇒∗ wq iff δ̂(p,w) = q and

p ⇒∗ w iff δ̂(p,w) ∈ F .

Then, in particular w ∈ L(G) iff w ∈ L(D).

May 14th 2018, Lecture 14 TMV027/DIT321 6/29

Regular Languages and Context-Free Languages

We prove by mathematical induction on |w | that

∀ p, q. p ⇒∗ wq iff δ̂(p,w) = q and

∀ p. p ⇒∗ w iff δ̂(p,w) ∈ F .

Base case: If |w | = 0 then w = ǫ.

Given the rules in the grammar, p ⇒∗ q only when p = q and p ⇒∗ ǫ only when p → ǫ.

We have δ̂(p, ǫ) = p by definition of δ̂ and p ∈ F by the way we defined the grammar.

Inductive step: Suppose |w | = n + 1, then w = av .

Then δ̂(p, av) = δ̂(δ(p, a), v) with |v | = n.

By IH δ(p, a) ⇒∗ vq iff δ̂(δ(p, a), v) = q.

By construction we have a rule p → aδ(p, a).

Then p ⇒ aδ(p, a) ⇒∗ avq iff δ̂(p, av) = δ̂(δ(p, a), v) = q.

By IH δ(p, a) ⇒∗ v iff δ̂(δ(p, a), v) ∈ F .

Now p ⇒ aδ(p, a) ⇒∗ av iff δ̂(p, av) = δ̂(δ(p, a), v) ∈ F .

May 14th 2018, Lecture 14 TMV027/DIT321 7/29

Chomsky Hierarchy

This hierarchy of grammars was described by Noam Chomsky in 1956:

Type 0: Unrestricted grammars
Rules are of the form α → β, α must be non-empty.
They generate exactly all languages that can be recognised
by a Turing machine;

Type 1: Context-sensitive grammars
Rules are of the form αAβ → αγβ.
α and β may be empty, but γ must be non-empty;

Type 2: Context-free grammars
Rules are of the form A → α, α can be empty.
Used to produce the syntax of most programming languages;

Type 3: Regular grammars
Rules are of the form A → Ba, A → aB or A → ǫ.

We have that Type 3 ⊂ Type 2 ⊂ Type 1 ⊂ Type 0.
May 14th 2018, Lecture 14 TMV027/DIT321 8/29

Pumping Lemma for Left Regular Languages

Let G = (V ,T ,R,S) be a left regular grammar and let n = |V |.

If a1a2 . . . am ∈ L(G) for m > n, then any derivation

S ⇒ a1A1 ⇒ a1a2A2 ⇒ . . . ⇒ a1 . . . aiA ⇒ . . . ⇒ a1 . . . ajA ⇒ . . . ⇒ a1 . . . am

has length m and there is at least one variable A which is used twice.

(Pigeon-hole principle)

If x = a1 . . . ai , y = ai+1 . . . aj and z = aj+1 . . . am, we have |xy | 6 n and xykz ∈ L(G)

for all k .

May 14th 2018, Lecture 14 TMV027/DIT321 9/29

Pumping Lemma for Context-Free Languages

Theorem: Let L be a context-free language.
Then, there exists a constant n—which depends on L—such that for every
w ∈ L with |w | > n, it is possible to break w into 5 strings x , u, y , v and z
such that w = xuyvz and

1 |uyv | 6 n;

2 uv 6= ǫ, that is, either u or v is not empty;

3 ∀k > 0. xukyvkz ∈ L.

Proof: (Sketch)

We can assume that the language is presented by a grammar in Chomsky Normal Form,
working with L − {ǫ}.

Observe that parse trees for grammars in CNF have at most 2 children.

Note: If m + 1 is the height of a parse tree for w , then |w | 6 2m.
(Prove this as an exercise!)

May 14th 2018, Lecture 14 TMV027/DIT321 10/29

Proof Sketch: Pumping Lemma for Context-Free
Languages

Let |V | = m > 0. Take n = 2m and w such that |w | > 2m.

Any parse tree for w has a path from root to leave of length at least m + 1.

Let A0,A1. . . . ,Ak be the variables in the path. We have k > m.

Then at least 2 of the last m + 1 variables should be the same,
say Ai and Aj .

Observe figures 7.6 and 7.7 in pages 282–283.

See Theorem 7.18 in the book for the complete proof.

May 14th 2018, Lecture 14 TMV027/DIT321 11/29

Example: Pumping Lemma for Context-Free Languages

Lemma: The language L = {ambmcm | m > 0} is not context-free.

Proof: Let us assume L is context-free. Then the Pumping lemma must apply.

Let n be the constant stated by the Pumping lemma.

Let w = anbncn ∈ L; we have that |w | > n.

By the lemma we know that w = xuyvz such that

|uyv | 6 n uv 6= ǫ ∀k > 0. xukyvkz ∈ L

Since |uyv | 6 n there is one letter d ∈ {a, b, c} that does not occur in uyv .

Since uv 6= ǫ there is another letter e ∈ {a, b, c}, e 6= d that does occur in uv .

Then e has more occurrences than d in xu2yv2z and this contradicts the fact that
xu2yv2z ∈ L.

Hence L cannot be a context-free language.

May 14th 2018, Lecture 14 TMV027/DIT321 12/29

Closure under Union

Theorem: Let G1 = (V1,T ,R1,S1) and G2 = (V2,T ,R2,S2) be CFG.
Then L(G1) ∪ L(G2) is a context-free language.

Proof: Let us assume V1 ∩ V2 = ∅ (easy to get via renaming).

Let S be a fresh variable.

We construct G = (V1 ∪ V2 ∪ {S},T ,R1 ∪R2 ∪ {S → S1 | S2}, S).

It is now easy to see that L(G) = L(G1) ∪ L(G2) since a derivation will have the form

S ⇒ S1 ⇒∗ w if w ∈ L(G1)

or
S ⇒ S2 ⇒∗ w if w ∈ L(G2)

May 14th 2018, Lecture 14 TMV027/DIT321 13/29

Closure under Concatenation

Theorem: Let G1 = (V1,T ,R1,S1) and G2 = (V2,T ,R2,S2) be CFG.
Then L(G1)L(G2) is a context-free language.

Proof: Again, let us assume V1 ∩ V2 = ∅.

Let S be a fresh variable.

We construct G = (V1 ∪ V2 ∪ {S},T ,R1 ∪R2 ∪ {S → S1S2},S).

It is now easy to see that L(G) = L(G1)L(G2) since a derivation will have the form

S ⇒ S1S2 ⇒∗ uv

with
S1 ⇒∗ u and S2 ⇒∗ v

for u ∈ L(G1) and v ∈ L(G2).

May 14th 2018, Lecture 14 TMV027/DIT321 14/29

Closure under Closure

Theorem: Let G = (V ,T ,R,S) be a CFG.
Then L(G)+ and L(G)∗ are context-free languages.

Proof: Let S ′ be a fresh variable.

We construct G+ = (V ∪ {S ′},T ,R∪ {S ′ → S | SS ′},S ′) and
G∗ = (V ∪ {S ′},T ,R∪ {S ′ → ǫ | SS ′}, S ′).

It is easy to see that S ′ ⇒ ǫ in G∗.

Also that S ′ ⇒∗ S ⇒∗ w if w ∈ L(G) is a valid derivation both in G+ and in G∗.

In addition, if w1, . . . ,wk ∈ L(G), it is easy to see that the derivation

S ′ ⇒ SS ′ ⇒∗ w1S
′ ⇒ w1SS

′ ⇒∗ w1w2S
′ ⇒∗ . . .

⇒∗ w1w2 . . .wk−1S
′ ⇒∗ w1w2 . . .wk−1S ⇒∗ w1w2 . . .wk−1wk

is a valid derivation both in G+ and in G∗.

May 14th 2018, Lecture 14 TMV027/DIT321 15/29

Non Closure under Intersection

Example: Consider the following languages over {a, b, c}:

L1 = {akbkcm | k ,m > 0}

L2 = {ambkck | k ,m > 0}

It is easy to give CFG generating both L1 and L2, hence L1 and L2 are CFL.

However L1 ∩ L2 = {akbkck | k > 0} is not a CFL (see slide 12).

May 14th 2018, Lecture 14 TMV027/DIT321 16/29

Closure under Intersection with Regular Language

Theorem: If L is a CFL and P is a RL then L ∩ P is a CFL.

Proof: See Theorem 7.27 in the book.
(It uses push-down automata which we have not seen.)

Example: Consider the following language over Σ = {0, 1}:

L = {ww | w ∈ Σ∗}

Is L a regular language?

Consider L′ = L ∩ L(0∗1∗0∗1∗) = {0n1m0n1m | n,m > 0}.

L′ is not a CFL (see additional exercise 4 in exercises for CFL).

Hence L cannot be a CFL since L(0∗1∗0∗1∗) is a RL.

May 14th 2018, Lecture 14 TMV027/DIT321 17/29

Non Closure under Complement

Theorem: CFL are not closed under complement.

Proof: Notice that
L1 ∩ L2 = L1 ∪ L2

If CFL are closed under complement then they should be closed under intersection
(since they are closed under union).

Then CFL are in general not closed under complement.

May 14th 2018, Lecture 14 TMV027/DIT321 18/29

Closure under Difference?

Theorem: CFL are not closed under difference.

Proof: Let L be a CFL over Σ.

It is easy to give a CFG that generates Σ∗.

Observe that L = Σ∗ −L.

Then if CFL are closed under difference they would also be closed under complement.

Theorem: If L is a CFL and P is a RL then L −P is a CFL.

Proof: Observe that P is a RL and L − P = L ∩ P .

May 14th 2018, Lecture 14 TMV027/DIT321 19/29

Closure under Reversal and Prefix

Theorem: If L is a CFL then so is Lr = {rev(w) | w ∈ L}.

Proof: Given a CFG G = (V ,T ,R,S) for L we construct the grammar
G r = (V ,T ,Rr,S) where Rr is such that, for each rule A → α in R, then A → rev(α)
is in Rr.

One should show by induction on the length of the derivations in G and G r that
L(G r) = Lr.

Theorem: If L is a CFL then so is Prefix(L).

Proof: For closure under prefix see exercise 7.3.1 part a) in the book.

May 14th 2018, Lecture 14 TMV027/DIT321 20/29

Decision Properties of Context-Free Languages

Very little can be answered when it comes to CFL.

The major tests we can answer are whether:

The language is empty;

(See the algorithm that tests for generating symbols in slide 4 lecture 13:

if L is a CFL given by a grammar with start variable S , then L is empty if S is not

generating.)

A certain string belongs to the language.

May 14th 2018, Lecture 14 TMV027/DIT321 21/29

Testing Membership in a Context-Free Language

Checking if w ∈ L(G), where |w | = n, by trying all productions may be
exponential on n.

An efficient way to check for membership in a CFL is based on the idea of
dynamic programming.

(Method for solving complex problems by breaking them down into simpler problems,
applicable mainly to problems where many of their subproblems are really the same;

not to be confused with the divide and conquer strategy.)

The algorithm is called the CYK algorithm after the 3 people who
independently discovered the idea: Cock, Younger and Kasami.

It is a O(n3) algorithm.

May 14th 2018, Lecture 14 TMV027/DIT321 22/29

Example: CYK Algorithm

Consider the following grammar in CNF given by the rules

S → AB | BA A → AS | a B → BS | b

and starting symbol S .

Does abba belong to the language generated by the grammar?

We fill the corresponding table:

{S}abba
∅abb {B}bba
{S}ab ∅bb {S}ba
{A}a {B}b {B}b {A}a
a b b a

Then S ⇒∗ abba.

May 14th 2018, Lecture 14 TMV027/DIT321 23/29

The CYK Algorithm

Let G = (V ,T ,R,S) be a CFG in CNF and w = a1a2 . . . an ∈ T ∗.

Does w ∈ L(G)?

In the CYK algorithm we fill a table

V1n

V1(n−1) V2n
...

...
V12 V23 V34 . . . V(n−1)n

V11 V22 V33 . . . V(n−1)(n−1) Vnn

a1 a2 a3 . . . an−1 an

where Vij ⊆ V is the set of A’s such that A ⇒∗ aiai+1 . . . aj .

We want to know if S ∈ V1n, hence S ⇒∗ a1a2 . . . an.
May 14th 2018, Lecture 14 TMV027/DIT321 24/29

CYK Algorithm: Observations

Each row corresponds to the substrings of a certain length:

bottom row is length 1,
second from bottom is length 2,
. . .
top row is length n;

We work row by row upwards and compute the Vij ’s;

In the bottom row we have i = j , that is, ways of generating ai ;

Vij is the set of variables generating aiai+1 . . . aj of length j − i + 1
(hence, Vij is in row j − i + 1);

In the rows below that of Vij we have all ways to generate shorter
strings, including all prefixes and suffixes of aiai+1 . . . aj .

May 14th 2018, Lecture 14 TMV027/DIT321 25/29

CYK Algorithm: Table Filling

We compute Vij as follows (remember we work with a CFG in CNF):

Base case: First row in the table. Here i = j .
Then Vii = {A | A → ai ∈ R}.

Recursive step: To compute Vij for i < j we have all Vpq’s in rows below.

The length of the string is at least 2, so A ⇒∗ aiai+1 . . . aj
starts with A ⇒ BC such that

B ⇒∗ aiai+1 . . . ak and
C ⇒∗ ak+1 . . . aj for some k .

So A ∈ Vij if ∃k , i 6 k < j such that
B ∈ Vik and C ∈ V(k+1)j ;
A → BC ∈ R.

We need to look at
(Vii ,V(i+1)j), (Vi(i+1),V(i+2)j), . . . , (Vi(j−1),Vjj).

May 14th 2018, Lecture 14 TMV027/DIT321 26/29

Example: CYK Algorithm

Consider the grammar given by the rules

S → XY X → XA | a | b
Y → AY | a A → a

and starting symbol S .

Does babaa belong to the language generated by the grammar?

We fill the corresponding table:

∅babaa
∅baba ∅abaa
∅bab ∅aba {S ,X}baa

{S ,X}ba ∅ab {S ,X}ba {S ,X ,Y }aa
{X}b {A,X ,Y }a {X}b {A,X ,Y }a {A,X ,Y }a
b a b a a

S /∈ V15 then S 6⇒∗ babaa.

May 14th 2018, Lecture 14 TMV027/DIT321 27/29

Undecidable Problems for Context-Free
Grammars/Languages

Definition: An undecidable problem is a decision problem for which it is
impossible to construct a single algorithm that always leads to a correct
yes-or-no answer.

Example: Halting problem: does this program terminate?

The following problems are undecidable:

Is the CFG G ambiguous?

Is the CFL L inherently ambiguous?

If L(G1) and L(G2) are CFL, is L(G1) ∩ L(G2) = ∅?
If L(G1) and L(G2) are CFL, is L(G1) = L(G2)? is L(G1) ⊆ L(G2)?

If L(G) is a CFL and P a RL, is P = L(G)? is P ⊆ L(G)?

If L(G) is a CFL over Σ, is L(G) = Σ∗?
May 14th 2018, Lecture 14 TMV027/DIT321 28/29

Overview of Next Lecture

Sections 6, 8 (just a bit of both):

Push-down automata;

Turing machines.

May 14th 2018, Lecture 14 TMV027/DIT321 29/29

