Finite Automata Theory and Formal Languages TMV027/DIT321– LP4 2018

Lecture 13

Ana Bove

May 7th 2018

Recap: Context-Free Grammars

- Equivalence between recursive inference, (leftmost/rightmost) derivations and parse trees;
- Ambiguous grammars;
- Inherent ambiguity;
- Proofs about grammars and languages.

Overview of Today's Lecture

- Simplification of CFL;
- Chomsky normal form for CFL.

Contributes to the following learning outcome:

- Explain and manipulate the diff. concepts in automata theory and formal lang;
- Simplify automata and context-free grammars;
- Differentiate and manipulate formal descriptions of lang, automata and grammars.

And guest lecture by *Martin Fabian* on *Application of Formal Verification* to the Lane Change Module of an Autonomous Vehicle.

May 7th 2018, Lecture 13

TMV027/DIT321

Generating, Reachable, Useful and Useless Symbols

Let $G = (V, T, \mathcal{R}, S)$ be a CFG. Let $X \in V \cup T$ and let $\alpha, \beta \in (V \cup T)^*$.

Definition: X is *reachable* if $S \Rightarrow^* \alpha X \beta$.

(This is similar to accessible states in FA.)

Definition: X is *generating* if $X \Rightarrow^* w$ for some $w \in T^*$.

Definition: The symbol X is *useful* if $S \Rightarrow^* \alpha X\beta \Rightarrow^* w$ for some $w \in T^*$. **Note:** A symbol that is useful should be generating and reachable.

Definition: X is *useless* iff it is not useful.

We shall simplify the grammars by eliminating useless symbols.

Computing the Generating Symbols

Let $G = (V, T, \mathcal{R}, S)$ be a CFG.

The following recursive procedure computes the generating symbols of G:

Base Case: All elements of T are generating;

Recursive Step: If a production $A \rightarrow \alpha$ is such that all symbols of α are known to be generating, then A is also generating. Observe that α could be ϵ .

The recursive step must be applied until no new symbols are found generating.

Theorem: The procedure above finds all and only the generating symbols of a grammar.

Proof: See Theorem 7.4 in the book.

May 7th 2018, Lecture 13

Example: Generating Symbols

Consider the grammar over $\{a\}$ given by the rules:

S	\rightarrow	aS	W	U
W	\rightarrow	aW		
U	\rightarrow	а		
V	\rightarrow	аа		

a is generating.

U and V are generating since $U \rightarrow a$ and $V \rightarrow aa$.

S is generating since $S \rightarrow U$.

No other symbol is found generating so W is not generating.

After eliminating the non-generating symbols and their productions we get

 $S \rightarrow aS \mid U \qquad U \rightarrow a \qquad V \rightarrow aa$

TMV027/DIT32

Computing the Reachable Symbols

Let $G = (V, T, \mathcal{R}, S)$ be a CFG.

The following recursive procedure computes the reachable symbols of G: Base Case: The start variable S is reachable;

Recursive Step: If A is reachable and we have a production $A \rightarrow \alpha$ then all symbols in α are reachable.

The recursive step must be applied until no new symbols are found reachable.

Theorem: The procedure above finds all and only the reachable symbols of a grammar.

Proof: See Theorem 7.6 in the book.

May 7th 2018, Lecture 13

TMV027/DIT32

Example: Reachable Symbols

Consider the grammar given by the rules:

S is reachable.

Hence a, B and C are reachable.

Then b and D are reachable.

No other symbol are found reachable so A and c are not reachable.

After eliminating the non-reachable symbols and their productions we get

$$S \rightarrow aB \mid BC \quad C \rightarrow b$$

 $B \rightarrow DB \mid C \quad D \rightarrow B$

TMV027/DIT32

6/21

Eliminating Useless Symbols

It is important in which order we check generating and reachable symbols!

Example: Consider the following grammar

 $S
ightarrow AB \mid a \qquad A
ightarrow b$

If we first check for generating symbols and then for reachability we get

S
ightarrow a

If we first check for reachability and then for generating we get

 $S \rightarrow a \qquad A \rightarrow b$

May 7th 2018, Lecture 13

TMV027/DIT32

Eliminating Useless Symbols

Theorem: Let $G = (V, T, \mathcal{R}, S)$ be a CFG and let $\mathcal{L}(G) \neq \emptyset$. Let $G' = (V', T', \mathcal{R}', S)$ be constructed as follows:

- First, eliminate all non-generating symbols and all productions involving one or more of those symbols;
- Then, eliminate all non-reachable symbols and all productions involving one or more of those symbols.

Then G' has no useless symbols and $\mathcal{L}(G) = \mathcal{L}(G')$.

Proof: See Theorem 7.2 in the book.

Example: Eliminating Useless Symbols

Consider the grammar given by the rules:

S	\rightarrow	gAe aYB CY	Α	\rightarrow	bBY ooC
В	\rightarrow	dd D	С	\rightarrow	jVB gl
D	\rightarrow	n	U	\rightarrow	kW
V	\rightarrow	baXXX oV	W	\rightarrow	С
X	\rightarrow	fV	Y	\rightarrow	Yhm

After eliminating non-generating symbols:

S	\rightarrow	gAe	Α	\rightarrow	ооС
В	\rightarrow	dd D	С	\rightarrow	gl
D	\rightarrow	n	U	\rightarrow	kW
			W	\rightarrow	С

After eliminating non-reachable symbols:

$$S
ightarrow gAe$$
 $A
ightarrow ooC$ $C
ightarrow gI$

What is the language generated by the grammar?

May 7th 2018, Lecture 1

TMV027/DIT32

Nullable Variables

Definition: A variable A is *nullable* if $A \Rightarrow^* \epsilon$. **Note:** Observe that only variables are nullable!

Let $G = (V, T, \mathcal{R}, S)$ be a CFG.

The following recursive procedure computes the nullable variables of G:

Base Case: If $A \rightarrow \epsilon$ is a production then A is nullable;

Recursive Step: If $B \to X_1 X_2 \dots X_k$ is a production and all the X_i are nullable then B is also nullable.

The recursive step must be applied until no new symbols are found nullable.

Theorem: The procedure above finds all and only the nullable variables of a grammar.

Proof: See Theorem 7.7 in the book. May 7th 2018, Lecture 13

TMV027/DIT32

Eliminating ϵ -Productions

Definition: An ϵ -production is a production of the form $A \rightarrow \epsilon$.

Let $G = (V, T, \mathcal{R}, S)$ be a CFG.

The following procedure eliminates the ϵ -production of G:

- Determine all nullable variables of G;
- Suild \mathcal{P} with all the productions of \mathcal{R} plus a rule $A \to \alpha\beta$ whenever we have $A \to \alpha B\beta$ and B is nullable.
 Note: If $A \to XX$ and all X are called a set include the second set.

Note: If $A \to X_1 X_2 \dots X_k$ and all X_i are nullable, we do not include the case where all the X_i are absent;

• Construct $G' = (V, T, \mathcal{R}', S)$ where \mathcal{R}' contains all the productions in \mathcal{P} except for the ϵ -productions.

Theorem: The grammar G' constructed from the grammar G as above is such that $\mathcal{L}(G') = \mathcal{L}(G) - \{\epsilon\}$.

Proof: See Theorem 7.9 in the book. May 7th 2018, Lecture 13

TMV027/DIT321

Example: Eliminating ϵ -Productions

Example: Consider the grammar given by the rules:

$$S \rightarrow aSb \mid SS \mid \epsilon$$

By eliminating $\epsilon\text{-productions}$ we obtain

$$S \rightarrow ab \mid aSb \mid S \mid SS$$

Example: Consider the grammar given by the rules:

 $S \rightarrow AB$ $A \rightarrow aAA \mid \epsilon$ $B \rightarrow bBB \mid \epsilon$

By eliminating $\epsilon\text{-productions}$ we obtain

 $S \rightarrow A \mid B \mid AB$ $A \rightarrow a \mid aA \mid aAA$ $B \rightarrow b \mid bB \mid bBB$

TMV027/DIT32

Eliminating Unit Productions

Definition: A *unit production* is a production of the form $A \rightarrow B$. (This is similar to ϵ -transitions in a ϵ -NFA.)

Let $G = (V, T, \mathcal{R}, S)$ be a CFG.

The following procedure eliminates the unit production of G:

Suild P with all the productions of R plus a rule A → α whenever we have A → B and B → α;

Observe that this step might introduce new unit productions that must be expanded!

Onstruct $G' = (V, T, \mathcal{R}', S)$ where \mathcal{R}' contains all the productions in \mathcal{P} except for the unit production.

Theorem: The grammar G' constructed from the grammar G as above is such that $\mathcal{L}(G') = \mathcal{L}(G)$.

Proof: See Theorem 7.13 in the book.

May 7th 2018, Lecture 13

TMV027/DIT321

Example: Eliminating Unit Productions

Consider the grammar given by the rules:

S	\rightarrow	$CBh \mid D$	$A \rightarrow$	aaC
В	\rightarrow	Sf ggg	$C \rightarrow$	<i>cA</i> <i>d</i> <i>C</i>
		E SABC		

By eliminating unit productions we obtain:

S	\rightarrow	CBh be SABC	Α	\rightarrow	aaC
В	\rightarrow	Sf ggg	С	\rightarrow	cA d
D	\rightarrow	be SABC	Ε	\rightarrow	be

Simplification of a Grammar

Theorem: Let $G = (V, T, \mathcal{R}, S)$ be a CFG whose language contains at least one string other than ϵ . If we construct G' by

- First, eliminating ϵ -productions;
- Then, eliminating unit productions;
- Finally, eliminating useless symbols;

using the procedures shown before then $\mathcal{L}(G') = \mathcal{L}(G) - \{\epsilon\}$.

In addition, G' contains no ϵ -productions, no unit productions and no useless symbols.

Proof: See Theorem 7.14 in the book.

Note: It is important to apply the steps in this order!

May 7th 2018, Lecture 13

Chomsky Normal Form

Definition: A CFG is in *Chomsky Normal Form* (CNF) if G has no useless symbols and all the productions are of the form $A \rightarrow BC$ or $A \rightarrow a$.

TMV027/DIT32

Note: Observe that a CFG that is in CNF has no unit or ϵ -productions!

Theorem: For any CFG G whose language contains at least one string other than ϵ , there is a CFG G' that is in Chomsky Normal Form and such that $\mathcal{L}(G') = \mathcal{L}(G) - \{\epsilon\}$.

Proof: See Theorem 7.16 in the book.

Constructing a Chomsky Normal Form

Let us assume G has no ϵ - or unit productions and no useless symbols.

Then every production is of the form $A \rightarrow a$ or $A \rightarrow X_1 X_2 \dots X_k$ for k > 1.

If X_i is a terminal introduce a new variable A_i and a new rule $A_i \rightarrow X_i$ (if no such rule exists for X_i with a variable that has no other rules).

Use A_i in place of X_i in any rule whose body has length > 1.

Now, all rules are of the form $B \rightarrow b$ or $B \rightarrow C_1 C_2 \dots C_k$ with all C_j variables.

Introduce k - 2 new variables and break each rule $B \rightarrow C_1 C_2 \dots C_k$ as

$$B \to C_1 D_1 \quad D_1 \to C_2 D_2 \quad \cdots \quad D_{k-2} \to C_{k-1} C_k$$

TMV027/DIT32:

May 7th 2018, Lecture 13

Example: Chomsky Normal Form

Example: Consider the grammar given by the rules:

 $S \rightarrow aSb \mid SS \mid ab$

We first obtain

$$S \rightarrow ASB \mid SS \mid AB \qquad A \rightarrow a \qquad B \rightarrow b$$

Then we build a grammar in Chomsky Normal Form

S	\rightarrow	AC	SS	AB	Α	\rightarrow	а
С	\rightarrow	SB			В	\rightarrow	b

Example: Observe however that

S
ightarrow aa \mid aS
ightarrow $SS \mid$ a

 $S \rightarrow AA \mid a \qquad A \rightarrow a$

Instead we need to build

is NOT equivalent to

Overview of Next Lecture

Sections 7.2–7.4, and notes on *Pumping lemma*:

- Regular grammars;
- Chomsky hierarchy;
- Pumping lemma for CFL;
- Closure properties of CFL;
- Decision properties of CFL.

May 7th 2018, Lecture 13

TMV027/DIT321

Overview of next Week

Mon 14	Tue 15	Wed 16	Thu 17	Fri 18
	10-12 EA		10-12 ES61	
	Exercise		Individual help	
Lec 13-15 HB3			Lec 13-15 HB3	
CFL.			PDA. TM.	
15-17 EA		15-17 EL41		
Exercise		Consultation		

Assignment 6: CFL. *Deadline:* Sunday May 20th 23:59.