Finite Automata Theory and Formal Languages TMV027/DIT321- LP4 2018

Lecture 13

Ana Bove

May 7th 2018

Recap: Context-Free Grammars

- Equivalence between recursive inference, (leftmost/rightmost) derivations and parse trees;
- Ambiguous grammars;
- Inherent ambiguity;
- Proofs about grammars and languages.

Overview of Today's Lecture

- Simplification of CFL;
- Chomsky normal form for CFL.

Contributes to the following learning outcome:

- Explain and manipulate the diff. concepts in automata theory and formal lang;
- Simplify automata and context-free grammars;
- Differentiate and manipulate formal descriptions of lang, automata and grammars.

And guest lecture by Martin Fabian on Application of Formal Verification to the Lane Change Module of an Autonomous Vehicle.

Generating, Reachable, Useful and Useless Symbols

Let $G=(V, T, \mathcal{R}, S)$ be a CFG.
Let $X \in V \cup T$ and let $\alpha, \beta \in(V \cup T)^{*}$.

Definition: X is reachable if $S \Rightarrow^{*} \alpha X \beta$. (This is similar to accessible states in FA.)

Definition: X is generating if $X \Rightarrow^{*} w$ for some $w \in T^{*}$.

Definition: The symbol X is useful if $S \Rightarrow^{*} \alpha X \beta \Rightarrow^{*} w$ for some $w \in T^{*}$. Note: A symbol that is useful should be generating and reachable.

Definition: X is useless iff it is not useful.

We shall simplify the grammars by eliminating useless symbols.

Computing the Generating Symbols

Let $G=(V, T, \mathcal{R}, S)$ be a CFG.

The following recursive procedure computes the generating symbols of G :
Base Case: All elements of T are generating;
Recursive Step: If a production $A \rightarrow \alpha$ is such that all symbols of α are known to be generating, then A is also generating. Observe that α could be ϵ.

The recursive step must be applied until no new symbols are found generating.

Theorem: The procedure above finds all and only the generating symbols of a grammar.

Proof: See Theorem 7.4 in the book.

Example: Generating Symbols

Consider the grammar over $\{a\}$ given by the rules:

$$
\begin{array}{lll}
S & \rightarrow & a S|W| U \\
W & \rightarrow & a W \\
U & \rightarrow & a \\
V & \rightarrow & a a
\end{array}
$$

a is generating.
U and V are generating since $U \rightarrow a$ and $V \rightarrow a a$.
S is generating since $S \rightarrow U$.
No other symbol is found generating so W is not generating.

After eliminating the non-generating symbols and their productions we get

$$
S \rightarrow a S \mid U \quad U \rightarrow a \quad V \rightarrow a a
$$

Computing the Reachable Symbols

Let $G=(V, T, \mathcal{R}, S)$ be a CFG.

The following recursive procedure computes the reachable symbols of G :
Base Case: The start variable S is reachable;
Recursive Step: If A is reachable and we have a production $A \rightarrow \alpha$ then all symbols in α are reachable.

The recursive step must be applied until no new symbols are found reachable.

Theorem: The procedure above finds all and only the reachable symbols of a grammar.

Proof: See Theorem 7.6 in the book.

Example: Reachable Symbols

Consider the grammar given by the rules:

$$
\begin{array}{ll}
S \rightarrow a B \mid B C & C \rightarrow b \\
A \rightarrow a A|c| a D b & D \rightarrow B \\
B \rightarrow D B \mid C &
\end{array}
$$

S is reachable.
Hence a, B and C are reachable.
Then b and D are reachable.
No other symbol are found reachable so A and c are not reachable.

After eliminating the non-reachable symbols and their productions we get

$$
\begin{array}{ll}
S \rightarrow a B \mid B C & C \rightarrow b \\
B \rightarrow D B \mid C & D \rightarrow B
\end{array}
$$

Eliminating Useless Symbols

It is important in which order we check generating and reachable symbols!

Example: Consider the following grammar

$$
S \rightarrow A B \mid a \quad A \rightarrow b
$$

If we first check for generating symbols and then for reachability we get

$$
S \rightarrow a
$$

If we first check for reachability and then for generating we get

$$
S \rightarrow a \quad A \rightarrow b
$$

Eliminating Useless Symbols

Theorem: Let $G=(V, T, \mathcal{R}, S)$ be a $C F G$ and let $\mathcal{L}(G) \neq \emptyset$.
Let $G^{\prime}=\left(V^{\prime}, T^{\prime}, \mathcal{R}^{\prime}, S\right)$ be constructed as follows:

- First, eliminate all non-generating symbols and all productions involving one or more of those symbols;
(2) Then, eliminate all non-reachable symbols and all productions involving one or more of those symbols.

Then G^{\prime} has no useless symbols and $\mathcal{L}(G)=\mathcal{L}\left(G^{\prime}\right)$.

Proof: See Theorem 7.2 in the book.

Example: Eliminating Useless Symbols

Consider the grammar given by the rules:

$$
\begin{array}{llll}
S \rightarrow g A e|a Y B| C Y & A & \rightarrow b B Y \mid o o C \\
B & \rightarrow d d \mid D & C & \rightarrow j V B \mid g I \\
D & \rightarrow n & U & \rightarrow k W \\
V & \rightarrow b a X X X \mid o V & W & \rightarrow c \\
X \rightarrow f V & Y & \rightarrow Y h m
\end{array}
$$

After eliminating non-generating symbols:

$$
\begin{array}{lllll}
S & \rightarrow g A e & A & \rightarrow & o o C \\
B & \rightarrow d d \mid D & C & \rightarrow & g I \\
D & \rightarrow n & U & \rightarrow & k W \\
& & & \rightarrow & c
\end{array}
$$

After eliminating non-reachable symbols:

$$
S \rightarrow g A e \quad A \rightarrow o o C \quad C \rightarrow g l
$$

What is the language generated by the grammar?

Nullable Variables

Definition: A variable A is nullable if $A \Rightarrow^{*} \epsilon$.
Note: Observe that only variables are nullable!

Let $G=(V, T, \mathcal{R}, S)$ be a CFG.
The following recursive procedure computes the nullable variables of G :
Base Case: If $A \rightarrow \epsilon$ is a production then A is nullable;
Recursive Step: If $B \rightarrow X_{1} X_{2} \ldots X_{k}$ is a production and all the X_{i} are nullable then B is also nullable.

The recursive step must be applied until no new symbols are found nullable.

Theorem: The procedure above finds all and only the nullable variables of a grammar.

Eliminating ϵ-Productions

Definition: An ϵ-production is a production of the form $A \rightarrow \epsilon$.
Let $G=(V, T, \mathcal{R}, S)$ be a CFG.
The following procedure eliminates the ϵ-production of G :
(1) Determine all nullable variables of G;
(2) Build \mathcal{P} with all the productions of \mathcal{R} plus a rule $A \rightarrow \alpha \beta$ whenever we have $A \rightarrow \alpha B \beta$ and B is nullable.
Note: If $A \rightarrow X_{1} X_{2} \ldots X_{k}$ and all X_{i} are nullable, we do not include the case where all the X_{i} are absent;
(Construct $G^{\prime}=\left(V, T, \mathcal{R}^{\prime}, S\right)$ where \mathcal{R}^{\prime} contains all the productions in \mathcal{P} except for the ϵ-productions.

Theorem: The grammar G^{\prime} constructed from the grammar G as above is such that $\mathcal{L}\left(G^{\prime}\right)=\mathcal{L}(G)-\{\epsilon\}$.

Proof: See Theorem 7.9 in the book.

Example: Eliminating ϵ-Productions

Example: Consider the grammar given by the rules:

$$
S \rightarrow a S b|S S| \epsilon
$$

By eliminating ϵ-productions we obtain

$$
S \rightarrow a b|a S b| S \mid S S
$$

Example: Consider the grammar given by the rules:

$$
S \rightarrow A B \quad A \rightarrow a A A|\epsilon \quad B \rightarrow b B B| \epsilon
$$

By eliminating ϵ-productions we obtain

$$
S \rightarrow A|B| A B \quad A \rightarrow a|a A| a A A \quad B \rightarrow b|b B| b B B
$$

Eliminating Unit Productions

Definition: A unit production is a production of the form $A \rightarrow B$.
(This is similar to ϵ-transitions in a ϵ-NFA.)

Let $G=(V, T, \mathcal{R}, S)$ be a CFG.
The following procedure eliminates the unit production of G :
(Build \mathcal{P} with all the productions of \mathcal{R} plus a rule $A \rightarrow \alpha$ whenever we have $A \rightarrow B$ and $B \rightarrow \alpha$;
Observe that this step might introduce new unit productions that must be expanded!
(2) Construct $G^{\prime}=\left(V, T, \mathcal{R}^{\prime}, S\right)$ where \mathcal{R}^{\prime} contains all the productions in \mathcal{P} except for the unit production.

Theorem: The grammar G^{\prime} constructed from the grammar G as above is such that $\mathcal{L}\left(G^{\prime}\right)=\mathcal{L}(G)$.
Proof: See Theorem 7.13 in the book.

Example: Eliminating Unit Productions

Consider the grammar given by the rules:

$$
\begin{array}{llll}
S & \rightarrow C B h \mid D & A & \rightarrow a a C \\
B \rightarrow S f \mid g g g & C & \rightarrow c A|d| C \\
D \rightarrow E \mid S A B C & E & \rightarrow b e
\end{array}
$$

By eliminating unit productions we obtain:

$$
\begin{array}{ll}
S \rightarrow C B h|b e| S A B C & A \rightarrow a a C \\
B \rightarrow S f \mid g g g & C \rightarrow c A \mid d \\
D \rightarrow b e \mid S A B C & E \rightarrow b e
\end{array}
$$

Simplification of a Grammar

Theorem: Let $G=(V, T, \mathcal{R}, S)$ be a CFG whose language contains at least one string other than ϵ. If we construct G^{\prime} by
(3) First, eliminating ϵ-productions;
(2) Then, eliminating unit productions;

- Finally, eliminating useless symbols;
using the procedures shown before then $\mathcal{L}\left(G^{\prime}\right)=\mathcal{L}(G)-\{\epsilon\}$.
In addition, G^{\prime} contains no ϵ-productions, no unit productions and no useless symbols.

Proof: See Theorem 7.14 in the book.

Note: It is important to apply the steps in this order!

Chomsky Normal Form

Definition: A CFG is in Chomsky Normal Form (CNF) if G has no useless symbols and all the productions are of the form $A \rightarrow B C$ or $A \rightarrow a$.

Note: Observe that a CFG that is in CNF has no unit or ϵ-productions!

Theorem: For any CFG G whose language contains at least one string other than ϵ, there is a CFG G^{\prime} that is in Chomsky Normal Form and such that $\mathcal{L}\left(G^{\prime}\right)=\mathcal{L}(G)-\{\epsilon\}$.

Proof: See Theorem 7.16 in the book.

Constructing a Chomsky Normal Form

Let us assume G has no ϵ - or unit productions and no useless symbols. Then every production is of the form $A \rightarrow a$ or $A \rightarrow X_{1} X_{2} \ldots X_{k}$ for $k>1$.

If X_{i} is a terminal introduce a new variable A_{i} and a new rule $A_{i} \rightarrow X_{i}$ (if no such rule exists for X_{i} with a variable that has no other rules).

Use A_{i} in place of X_{i} in any rule whose body has length >1.

Now, all rules are of the form $B \rightarrow b$ or $B \rightarrow C_{1} C_{2} \ldots C_{k}$ with all C_{j} variables.

Introduce $k-2$ new variables and break each rule $B \rightarrow C_{1} C_{2} \ldots C_{k}$ as

$$
B \rightarrow C_{1} D_{1} \quad D_{1} \rightarrow C_{2} D_{2} \quad \cdots \quad D_{k-2} \rightarrow C_{k-1} C_{k}
$$

Example: Chomsky Normal Form

Example: Consider the grammar given by the rules:

$$
S \rightarrow a S b|S S| a b
$$

We first obtain

$$
S \rightarrow A S B|S S| A B \quad A \rightarrow a \quad B \rightarrow b
$$

Then we build a grammar in Chomsky Normal Form

$$
\begin{array}{lllll}
S & \rightarrow A C|S S| A B & A & \rightarrow & a \\
C & \rightarrow S B & B & \rightarrow b
\end{array}
$$

Example: Observe however that

$$
S \rightarrow \text { aa } \mid a
$$

is NOT equivalent to

$$
S \rightarrow S S \mid a
$$

Instead we need to build

$$
S \rightarrow A A \mid a \quad A \rightarrow a
$$

Overview of Next Lecture

Sections 7.2-7.4, and notes on Pumping lemma:

- Regular grammars;
- Chomsky hierarchy;
- Pumping lemma for CFL;
- Closure properties of CFL;
- Decision properties of CFL.

Overview of next Week

Mon 14	Tue 15	Wed 16	Thu 17	Fri 18
	10-12 EA Exercise		10-12 ES61 Individual help	
Lec 13-15 HB3 CFL.			Lec 13-15 HB3 PDA. TM.	
15-17 EA Exercise		15-17 EL41 Consultation		

Assignment 6: CFL.
Deadline: Sunday May 20th 23:59.

