Finite Automata Theory and Formal Languages

TMV027/DIT321- LP4 2018

Lecture 12

Ana Bove

May 3rd 2018

Recap: Context-Free Grammars

- Defined the so-called context-free languages;
- Developed in the mid-1950s by Noam Chomsky;
- Defined as 4-tuples $G=(V, T, \mathcal{R}, S)$;
- Rules of the form $A \rightarrow \alpha$ with $A \in V$ and $\alpha \in(V \cup T)^{*}$;
- Notions:
- Recursive inference;
- Derivations: $\Rightarrow, \stackrel{I m}{\Rightarrow}, \stackrel{r m}{\Rightarrow}, \Rightarrow^{*}, \stackrel{I m}{\Rightarrow}, \stackrel{r m}{\Rightarrow}$;
- Sentential forms $\alpha: S \Rightarrow^{*} \alpha, S \stackrel{\text { lm }}{\Rightarrow} \alpha, S \stackrel{r m}{\Rightarrow} \alpha$;
- Parse trees, their heights and yields;
- $\mathcal{L}(G)=\left\{w \in T^{*} \mid S \Rightarrow^{*} w\right\}$;
- Proofs about the language of a grammar.

Overview of Today's Lecture

- Inference, derivations and parse trees;
- Ambiguity in grammars;
- More about proofs on grammars and languages.

Contributes to the following learning outcome:

- Explain and manipulate the diff. concepts in automata theory and formal lang;
- Prove properties of languages, grammars and automata with rigorously formal mathematical methods;
- Design automata, regular expressions and context-free grammars accepting or generating a certain language;
- Describe the language accepted by an automata or generated by a regular expression or a context-free grammar;
- Determine if a certain word belongs to a language;
- Differentiate and manipulate formal descriptions of lang, automata and grammars.

Inference, Derivations and Parse Trees

Given a CFG $G=(V, T, \mathcal{R}, S)$, the following statements are equivalents:
(1) The recursive inference procedure determines that string w is in the language of the variable A;
(2) $A \Rightarrow^{*} w$;
(-) $\stackrel{\text { lm }}{\Rightarrow}{ }^{*} w$;
(-) $A \stackrel{r m}{\Rightarrow} w$;
(There is a parse tree with root A and yield w.

Note: The equivalences of $2-5$ are also valid when the string w contains variables.

Inference, Derivations and Parse Trees (Cont.)

Showing $3 \Rightarrow 2$ and $4 \Rightarrow 2$ is trivial.
The next 7 slides contain the main ideas in the proofs of $1 \Rightarrow 5,5 \Rightarrow 3$, $5 \Rightarrow 4$ and $2 \Rightarrow 1$.

We will intuitively follow the proofs using the following grammar

$$
\begin{aligned}
& E \rightarrow 0|1| E+E \mid \text { if } B \text { then } E \text { else } E \\
& B \rightarrow \text { True } \mid \text { False }|E<E| E==E
\end{aligned}
$$

and the string "if $0<1$ then $1+1$ else 0 ".

From Recursive Inference to Parse Trees $(1 \Rightarrow 5)$

Theorem: Let $G=(V, T, \mathcal{R}, S)$ be a $C F G$ and $A \in V$. If the recursive inference tells us that w is in the language of A then there is a parse tree with root A and yield w.

Proof: $P(n)$: if w is obtained from A by a recursive inference with n steps, then there is a parse tree with root A and yield w.
By course-of-value induction on the number of steps in the recursive inference.

Base case: 1 step: Then we have a production $A \rightarrow w$ and it is trivial to build the tree.

Inductive Step: Our IH is that the statement is true for strings x and variables B such that x is in the language of B can be recursively inferred in at most n steps.

Let us consider a recursive inference of $n+1$ steps telling us w is in the language of A

From Recursive Inference to Parse Trees $(1 \Rightarrow 5)$ (Cont.)

Suppose the last step in the inference of w uses the production $A \rightarrow X_{1} X_{2} \ldots X_{k}$.

We break w up as $w_{1} w_{2} \ldots w_{k}$ where:
(1) If X_{i} is a terminal then $w_{i}=X_{i}$;
(2) If X_{i} is a variable then w_{i} is the string which was inferred to be in the lang. of X_{i}. This inference took at most n steps and we can apply IH.
Then we have a tree with root X_{i} and yield w_{i}.

We can now construct a tree with root A, first line of children $X_{1}, X_{2}, \ldots, X_{k}$, and then the trees given by the IH when X_{i} is a variable or the corresponding terminal when X_{i} is a terminal.

The yield of the tree is the concatenation of the yields of the children of A which is $w_{1} w_{2} \ldots w_{k}=w$.

From Trees to Leftmost Derivations $(5 \Rightarrow 3)$
Theorem: Let $G=(V, T, \mathcal{R}, S)$ be a CFG. If there is a parse tree with root A and yield w then $A \Rightarrow^{*} w$ in G.

Proof: By course-of-value induction in the height of the tree.
$P(n)$: If there is a parse tree of height n, root A and yield w then $A \stackrel{I m}{\Rightarrow}{ }^{*} w$ in G.
Base case: Height 1: Must be a production $A \rightarrow w$ and then $A \xlongequal{\operatorname{lm}} w$ and $A \stackrel{\operatorname{lm}}{\Rightarrow}{ }^{*} w$.
Inductive Step: Our IH is that for any parse tree of height at most n, root B and yield x then $B \stackrel{\operatorname{lm}}{\Rightarrow}{ }^{*} x$ in G.

Let us consider a tree with height $n+1$ and root A : Let $X_{1}, X_{2}, \ldots, X_{k}$ be the children of the root A. Note that there must be a production $A \rightarrow X_{1} X_{2} \ldots X_{k}$. Now:
(1) If X_{i} is a terminal, define $w_{i}=X_{i}$;
(2) If X_{i} is a variable, then it is the root of a subtree. Let w_{i} be the yield of X_{i}. This subtree has height at most n and then by $\mathrm{IH} X_{i} \stackrel{\text { lm }}{\Rightarrow}{ }^{*} w_{i}$.

From Trees to Leftmost Derivations $(5 \Rightarrow 3)$ (Cont.)

Observe that $w=w_{1} w_{2} \ldots w_{k}$.
To construct a leftmost derivation for w we start at $A \stackrel{l m}{\Rightarrow} X_{1} X_{2} \ldots X_{k}$.
By recursion on i we show that $A \stackrel{I m}{\Rightarrow} w_{1} w_{2} \ldots w_{i-1} X_{i} X_{i+1} \ldots X_{k}$.
Base case: For $i=0$ we already have $A \stackrel{\text { lm }}{\Rightarrow} X_{1} X_{2} \ldots X_{k}$.
Recursive Step: Assume $A \xlongequal{l m}{ }^{*} w_{1} w_{2} \ldots w_{i-1} X_{i} X_{i+1} \ldots X_{k}$.
(1) If X_{i} is a terminal we do nothing.

So $A \stackrel{l m}{\Rightarrow} w_{1} w_{2} \ldots w_{i-1} w_{i} X_{i+1} \ldots X_{k}$;
(2) If X_{i} is a variable, by IH we have that $X_{i} \stackrel{\text { lm }}{\Rightarrow} \alpha_{1} \stackrel{\text { lm }}{\Rightarrow} \alpha_{2} \ldots \stackrel{\text { lm }}{\Rightarrow} w_{i}$.

Apply this sequence of derivations to go from $A \stackrel{l m}{\Rightarrow}{ }^{*} w_{1} w_{2} \ldots w_{i-1} X_{i} X_{i+1} \ldots X_{k}$ to $A \xlongequal{l m}{ }^{*} w_{1} w_{2} \ldots w_{i-1} w_{i} X_{i+1} \ldots X_{k}$.
Observe that each step is a leftmost derivation!
When $i=k$ then we have constructed a leftmost derivation $A \xlongequal{\overbrace{*}^{*}} w_{1} w_{2} \ldots w_{i-1} w_{i} w_{i+1} \ldots w_{k}$.

From Trees to Rightmost Derivations $(5 \Rightarrow 4)$

Theorem: Let $G=(V, T, \mathcal{R}, S)$ be a $C F G$.
If there is a parse tree with root A and yield w then $A \stackrel{r m}{\Rightarrow} w$ in G.

Proof: The proof is similar to that of the previous theorem.
The difference is that we first need to expand X_{k} then X_{k-1} and so on until we get to X_{1}.

From Derivations to Recursive Inference $(2 \Rightarrow 1)$

Theorem: Let $G=(V, T, \mathcal{R}, S)$ be a CFG.
If $A \Rightarrow^{*} w$ then the recursive inference procedure applied to G determines that w is in the language of A.

Proof: $P(n)$: if $A \Rightarrow^{n} w$ then the recursive inference procedure applied to G determines that w is in the language of A.
By course-of-value induction on the length of the derivation of $A \Rightarrow^{*} w$.

Base case: 1 step: Then $A \rightarrow w$ is a production and the base part of the recursive inference will find that w is in the language of A.

Inductive Step: Our IH is that if $B \Rightarrow^{*} x$ in at most n steps, then the recursive inference procedure applied to G determines that x is in the language of B.

Let $A \Rightarrow^{n+1} w$.

From Derivations to Recursive Inference $(2 \Rightarrow 1)$ (Cont.)

Let $A \Rightarrow X_{1} X_{2} \ldots X_{k} \Rightarrow^{*} w$ be the first step.
Now, we can break w as $w=w_{1} w_{2} \ldots w_{k}$ where:
(1) If X_{i} is a terminal then $X_{i}=w_{i}$;
(2) If X_{i} is a variable then $X_{i} \Rightarrow^{*} w_{i}$.

This derivation takes at most n steps and then by $\mathrm{IH} w_{i}$ is inferred to be in the language of X_{i}.

If $A \Rightarrow X_{1} X_{2} \ldots X_{k} \Rightarrow^{*} w$ then there must be a production $A \rightarrow X_{1} X_{2} \ldots X_{k}$ and we know that each w_{i} is either X_{i} or belongs to the language of X_{i}.

The last step of the recursive inference procedure must use these facts to obtain that $w_{1} w_{2} \ldots w_{k}$ is in the language of A.

Ambiguity in Natural (English) Language

Dictionary definition:

Ambiguity: a word or expression that can be understood in two or more possible ways.

What do I mean when I say...

- Kids make nutritious snacks;
- The lady hit the man with an umbrella;
- He gave her cat food;
- The man saw the boy with the binoculars;
- They are hunting dogs.

Example: Ambiguous Grammar

The following (simplified part of a) grammar produces ambiguity in programming languages with conditionals:

$$
\begin{aligned}
& C \rightarrow \text { if } b \text { then } C \text { else } C \\
& C \rightarrow \text { if } b \text { then } C \\
& C \rightarrow s
\end{aligned}
$$

The expression "if b then if b then s else s " can be interpreted in 2 ways:
(1) if b then (if b then s else s)
(2) if b then (if b then s) else s

How should the parser of this language understand the expression?

Example: Ambiguous Grammars

Consider the following grammar

$$
E \rightarrow 0|1| E+E \mid E * E
$$

The sentential form $E+E * E$ has the following 2 possible derivations
(1) $E \Rightarrow E+E \Rightarrow E+E * E$
(2) $E \Rightarrow E * E \Rightarrow E+E * E$

Observe the difference of the corresponding parse tree for each derivation.

Intuitively, there are 2 possible meanings for words like $1+1 * 0$:
(1) $1+(1 * 0)=1$
(2) $(1+1) * 0=0$

Ambiguous Grammars

Definition: A CFG grammar $G=(V, T, \mathcal{R}, S)$ is ambiguous if there is at least a string $w \in T^{*}$ for which we can find two (or more) parse trees, each with root S and yield w.

If each string has at most one parse tree we say that the grammar is unambiguous.

Note: The existence of different derivations for a certain string does not necessarily mean the existence of different parse trees!
(1) $E \Rightarrow E+E \Rightarrow 1+E \Rightarrow 1+0$
(2) $E \Rightarrow E+E \Rightarrow E+0 \Rightarrow 1+0$

Leftmost/Rightmost Derivations and Ambiguity

We have seen that derivations might not be unique even if the grammar is unambiguous.

However, in an unambiguous grammars both the leftmost and the rightmost derivations will be unique.

Example: The grammar of slide 14 must be ambiguous since we have 2 leftmost derivations for $1+0 * 1$:
(1) $E \stackrel{\text { lm }}{\Rightarrow} E+E \stackrel{\text { lm }}{\Rightarrow} 1+E \stackrel{\text { lm }}{\Rightarrow} 1+E * E \stackrel{\text { lm }}{\Rightarrow} 1+0 * E \stackrel{l m}{\Rightarrow} 1+0 * 1$
(2) $E \stackrel{\text { lm }}{\Rightarrow} E * E \stackrel{\text { lm }}{\Rightarrow} E+E * E \stackrel{\text { lm }}{\Rightarrow} 1+E * E \stackrel{\text { lm }}{\Rightarrow} 1+0 * E \stackrel{l m}{\Rightarrow} 1+0 * 1$

Note: In general we have

> Number of leftmost derivations $=$ number of rightmost derivations $=$ number of parse trees.

Leftmost/Rightmost Derivations and Ambiguity

Theorem: Let $G=(V, T, \mathcal{R}, S)$ be a CFG and let $w \in T^{*}$. w has 2 distinct parse trees iff w has 2 distinct leftmost (rightmost) derivations from S.

Proof: We sketch the proof dealing with leftmost derivations.

If) Start the tree with S. Examine each step in the derivation. Only the leftmost variable will be replaced. This variable corresponds to the leftmost node in the tree being constructed. The production used determines the children of this subtree. 2 different derivations will produce a subtree with different children.

Only-if) In slides 7-8 we constructed a leftmost derivation from a parse tree. Observe that if the trees have a node where different productions are used then so will the leftmost derivations.

Removing Ambiguity from Grammars

Unfortunately, there is no algorithm that can tell us if an arbitrary grammar is ambiguous.

In addition, there is no algorithm that can remove ambiguity in an arbitrary grammar.

In some cases though, there are well-known techniques for eliminating ambiguity.

You will see more of this in the course Programming language technology.

Some context-free languages have only ambiguous grammars.
These languages are called inherently ambiguous.
In these cases removal of ambiguity is impossible.

Inherent Ambiguity

Definition: A context-free language \mathcal{L} is said to be inherently ambiguous if all its grammars are ambiguous.

Note: It is enough that 1 grammar for \mathcal{L} is unambiguous for \mathcal{L} to be unambiguous.

Example: The following language is inherently ambiguous:

$$
\mathcal{L}=\left\{a^{n} b^{n} c^{m} d^{m} \mid n, m \geqslant 1\right\} \cup\left\{a^{n} b^{m} c^{m} d^{n} \mid n, m \geqslant 1\right\}
$$

(See grammar for \mathcal{L} in Lecture 11, slide 17.)
Strings of the form $a^{n} b^{n} c^{n} d^{n}$ for $n>0$ have 2 different leftmost derivations.
See pages $214-215$ in the book for the intuition of why \mathcal{L} is inherent ambiguous. The proof is complex!

Removing Ambiguity: Problems with the Grammar of Expressions

There are 2 causes of ambiguity in the following grammar

$$
E \rightarrow 0|1| E+E \mid E * E
$$

(1) The precedence of the operators is not reflected in the grammar: * has stronger precedence than + ;
(2) How to associate an operator is not reflected in the grammar:

We will have 2 parse trees for $E+E+E$.
Even if the operator is associative in the language we define, we need to pick one way of grouping the operator.

Solution for the Grammar of Expressions

To enforce precedence we introduce different variables representing those expressions with the same binding strength. Namely:

- A factor is an expression that cannot be broken apart by any adjacent operators: either 0 or 1 , or a parenthesised expression;
- A term is an expression that cannot be broken by the + operator, that is, a sequence of one or more factors connected by $*$;
- An expression is a sequence of one or more terms connected by + .

In this way, terms and expressions will associate to the left.

Unambiguous Grammar for Expressions

We have then the following unambiguous grammar:

$$
\begin{gathered}
F \\
T
\end{gathered} \rightarrow 0: 1 \mid(E)
$$

Note: It is not obvious that this is an unambiguous grammar!

Example: We have $E \Rightarrow^{*} 1+1 * 0$ with the usual meaning or $E \Rightarrow^{*}(1+1) * 0$ if we want to change the precedence of the operators.

Even $E \Rightarrow^{*} 1+0+1$ has now only one derivation.

Example: Balanced Parentheses

The following grammar of parenthesis expressions is ambiguous

$$
E \rightarrow \epsilon|E E|(E)
$$

since $E \stackrel{I m}{\Rightarrow} \epsilon$ and

$$
E \stackrel{\operatorname{lm}}{\Rightarrow} E E \stackrel{\operatorname{lm}}{\Rightarrow} \epsilon E \stackrel{\operatorname{lm}}{\Rightarrow} \epsilon \epsilon=\epsilon .
$$

Let us consider the following grammar instead:

$$
S \rightarrow \epsilon \mid(S) S
$$

We want to prove that:
Lemma: $\mathcal{L}(S)=\mathcal{L}(E)$.
Theorem: The grammar for S is not ambiguous.

Example: Balanced Parentheses (Cont.)

Lemma: $\mathcal{L}(S) \mathcal{L}(S) \subseteq \mathcal{L}(S)$.

Proof: Let $P(n): \forall w \in \mathcal{L}(S)$. if $|w|=n$ then $w \mathcal{L}(S) \subseteq \mathcal{L}(S)$.
By course-of-value induction on $|w|$.

Base case: If $|w|=0$ then $w=\epsilon$. We have that $\epsilon \mathcal{L}(S)=\mathcal{L}(S)$.

Inductive step: Our IH is that
$\forall 0 \leqslant i \leqslant n . \forall w^{\prime} \in \mathcal{L}(S)$. if $\left|w^{\prime}\right|=i$ then $w^{\prime} \mathcal{L}(S) \subseteq \mathcal{L}(S)$.
Let $w \in \mathcal{L}(S)$ with $|w|=n+1$, then $S \Rightarrow^{*} w$.
Given the rules of the grammar, then $w=(u) v$ with $u, v \in \mathcal{L}(S)$ and $|u|,|v| \leqslant n$. So the IH holds for u and v.

Then, by IH we have that $v \mathcal{L}(S) \subseteq \mathcal{L}(S)$.
Since $S \rightarrow(S) S$ is a production then $(\mathcal{L}(S)) \mathcal{L}(S) \subseteq \mathcal{L}(S)$.
$u \in \mathcal{L}(S)$, then

$$
w \mathcal{L}(S)=(u) v \mathcal{L}(S) \subseteq(u) \mathcal{L}(S) \subseteq \mathcal{L}(S)
$$

May 3rd 2018, Lecture 12

Example: Balanced Parentheses (Cont.)

Lemma: $\mathcal{L}(S)=\mathcal{L}(E)$.

Proof: (Sketch)
$\mathcal{L}(S) \subseteq \mathcal{L}(E):$ Let $P(n): \forall w \in \mathcal{L}(S)$. if $|w|=n$ then $w \in \mathcal{L}(E)$.
By course-of-value induction on $|w|$.
Base case is trivial.
Our IH is that $\forall 0 \leqslant i \leqslant n . \forall w^{\prime} \in \mathcal{L}(S)$. if $\left|w^{\prime}\right|=i$ then $w^{\prime} \in \mathcal{L}(E)$.
Let $w \in \mathcal{L}(S)$ with $|w|=n+1$. Hence $w=(u) v$ with $u, v \in \mathcal{L}(S)$ and $|u|,|v| \leqslant n$.
By $\mathrm{IH} u, v \in \mathcal{L}(E)$. Using the productions of E we conclude that $w \in \mathcal{L}(E)$.
$\mathcal{L}(E) \subseteq \mathcal{L}(S):$ Let $P(n): \forall x$. if $E \Rightarrow^{n} x$ then $x \in \mathcal{L}(S)$.
By course-of-value induction on the length of derivation $E \Rightarrow^{*} x$.
Base case is $E \Rightarrow x$ then $x=\epsilon$ and $x \in \mathcal{L}(S)$.
Our IH is that $\forall 0 \leqslant i \leqslant n$. $\forall x^{\prime}$. if $E \Rightarrow^{i} x^{\prime}$ then $x^{\prime} \in \mathcal{L}(S)$.
If $E \Rightarrow E E \Rightarrow^{n} x=u v$ then u and v are derived from E in less than n steps.
By $\mathrm{IH} u, v \in \mathcal{L}(S)$ and by previous lemma then $x=u v \in \mathcal{L}(S) \mathcal{L}(S) \subseteq \mathcal{L}(S)$.
If $E \Rightarrow(E) \Rightarrow^{n} x=(u)$ then $E \Rightarrow^{n} u$. By IH $u \in \mathcal{L}(S)$ and $x=(u) \epsilon \in \mathcal{L}(S)$.

Example: Balanced Parentheses (Cont.)

Theorem: The grammar for S is not ambiguous.

Proof: Not trivial!! Let $w \in\{(,)\}^{*}$.
One tries to show that there is at most one leftmost derivation $S \stackrel{l m}{\Rightarrow}{ }^{\text {* }} w$. If $w=\epsilon$ then it is trivial.
Otherwise, either $w=) v$ and there is no derivation or

$$
w=(v \text { and we have that } S \stackrel{l m}{\Rightarrow}(S) S .
$$

We now should prove (by induction on $|u|$) that
Lemma: Given u, for any k, there is at most one leftmost derivation $S) S\rangle^{k} \stackrel{l m}{\Rightarrow}{ }^{*} u$.

We use this lemma with v and $k=1$ to conclude that there is at most one leftmost derivation $S) S \stackrel{I m}{\Rightarrow}{ }^{*} v$.
Then, there is at most one leftmost derivation $S \stackrel{l m}{\Rightarrow}(S) S \stackrel{I m}{\Rightarrow}(v=w$.

Overview of Next Lecture

Section 7.1:

- Simplification of CFL;
- Chomsky normal form for CFL.

Guest lecture by Martin Fabian: Application of Formal Verification to the Lane Change Module of an Autonomous Vehicle.

Overview of next Week

Mon 7	Tue 8	Wed 9	Thu 10	Fri 13
	10-12 EA Exercise			
Lec 13-15 HB3 CFL. Guest lecture.		13-15 EL41 Consultation		
$15-17$ EA Exercise		$15-17$ EL41 Individual help		

Assignment 5: CFG.
Deadline: Sunday May 13th 23:59.

