Finite Automata Theory and Formal Languages TMV027/DIT321

Turing Machines

Exercise 7

Basic exercises

1. Given the alphabet $\Sigma=\{I\}$, the Natural number n can be represented in a tape as n consecutive occurrences of I.

Give both a high-level description and a transition diagram of a Turing machine computing the following operations on Natural numbers:
(a) Successor and predecessor;
(b) Addition and subtraction;

Consider the input numbers on the tape separated by a blank symbol (\square).
2. For each of the languages below, give both a high-level description and a transition diagram of a Turing machine accepting the language.
In each case, state whether your Turing machine is also a Turing decider or not.
(a) $\left\{\sharp w \sharp w \mid w \in\{0,1\}^{*}\right\}$;
(b) $\left\{\sharp w_{1} \sharp w_{2} \mid w_{1}, w_{2} \in\{0,1\}^{*}\right.$ and $\left.w_{1} \neq w_{2}\right\}$;
(c) $\left\{\sharp w_{1} \sharp w_{2} \mid w_{1}, w_{2} \in\{0,1\}^{*}\right.$ and length $\left(w_{1}\right)<$ length $\left.\left(w_{2}\right)\right\}$;
(d) $\left\{\sharp w_{1} \sharp w_{2} \mid w_{1}, w_{2} \in\{0,1\}^{*}\right.$ and length $\left(w_{1}\right)=$ length $\left.\left(w_{2}\right)\right\}$;

Additional exercises

1. Give a Turing machine for the multiplication of numbers given as in exercise 11) above.
2. Do as in exercise 2) above for the following languages:
(a) $\left\{0^{n} 1^{n} 2^{n} \mid n \geqslant 0\right\}$;
(b) $\left\{0^{i} 1^{j} 2^{k} \mid k=i * j\right\}$;
(c) $\left\{0^{i} 1^{j} \mid j=i^{2}\right\}$.

Programming Exercises

1. Write a program that runs/simulates a Turing machine.
