
Solutions Exam 180529

Here we only give a brief explanation of the solution. Your solution should in general be more elabo-
rated than these ones.

1. Our property is: P (n) : ∀w, if S ⇒n w then n 6 #b(w) 6 #a(w) 6 2n.

We will use course-of-value/strong induction on the length of the derivation (number of steps) S ⇒n

w.

Base cases: S ⇒ w, hence the rule applied should have been S → aba or S → ab.

Here, 1 6 1 = #b(aba) 6 #a(aba) = 2 6 2 and 1 6 1 = #b(ab) 6 #a(ab) = 1 6 2, which proves the
base cases.

Step case: Our IH is: ∀w, if S ⇒k w with 1 6 k 6 n, then
n 6 #b(w) 6 #a(w) 6 2n.

Let S ⇒n+1 w with n > 0. We need to prove P (n + 1), that is, ∀w, if S ⇒n+1 w then n + 1 6
#b(w) 6 #a(w) 6 2(n+ 1).

Since n > 0 then the first rule applied should have been S → aSb or S → aSbSa.

In the case the first rule was S → aSb then we have that S ⇒ aSb⇒n w so w = aw1b with S ⇒n w1.
Then the IH applies to n and we know that n 6 #b(w1) 6 #a(w1) 6 2n. Now
n+ 1 6 #b(w1) + 1 6 #a(w1) + 1 6 2n+ 1 which gives us that
n+ 1 6 #b(w) 6 #a(w) 6 2n+ 1 6 2(n+ 1) as desired.

In the case the first rule was S → aSbSa then we have that S ⇒ aSbSa⇒n w so w = aw1bw2a with
S ⇒i w1, S ⇒j w2, 1 6 i, j 6 n and i+ j = n. Then the IH applies to both i and j so we know that
i 6 #b(w1) 6 #a(w1) 6 2i and j 6 #b(w2) 6 #a(w2) 6 2j. Then
i+ j = n 6 #b(w1) + #b(w2) 6 #a(w1) + #a(w2) 6 2(i+ j) = 2n. From this we get
n+ 1 6 #b(w1) + #b(w2) + 1 6 #a(w1) + #a(w2) + 1 6 2n+ 1 and
n+ 1 6 #b(w1) + #b(w2) + 1 6 #a(w1) + #a(w2) + 2 6 2n+ 2. Hence
n+ 1 6 #b(w) 6 #a(w) 6 2(n+ 1) as desired.

2. We define a NFA:
0 1

→ q0 {q1, q3} {q4}
q1 ∅ {q0, q2}
q2 {q3} {q0, q4}
q3 {q3} {q4}

∗q4 ∅ ∅

3. (a) 0∗1 + 0∗10(0 + 1)∗ + 0∗10∗1 + 0∗10∗1(0 + 1)+ = 0∗1(ε+ 0(0 + 1)∗ + 0∗1 + 0∗1(0 + 1)+) =
0∗1(ε+ 0(0 + 1)∗ + 0∗1(ε+ (0 + 1)+))

(b)
0 1

→ q0 q0 q1q2q3
∗q1q2q3 q2q5 q3q4

∗q2q5 q2q5 q3q4q5
∗q3q5 q5 q5

∗q3q4q5 q5 q5
∗q5 q5 q5

1



4. I will solve equations:

E0 = 0E0 + 1E1 + 2E2 E0 = 0E0 + 1E1 + 20∗2E4

E1 = 0E3 + 1E4 = 0(0 + 1 + 2)∗ + 1E4 E1 = 0E3 + 1E4 = 0(0 + 1 + 2)∗ + 1E4

E2 = 0E2 + 2E4 = 0∗2E4

E3 = (0 + 1 + 2)E3 + ε = (0 + 1 + 2)∗

E4 = 2E1 + 1E3 = 2E1 + 1(0 + 1 + 2)∗ E4 = 20(0 + 1 + 2)∗ + 21E4 + 1(0 + 1 + 2)∗

= (21)∗(20 + 1)(0 + 1 + 2)∗

Hence E1 = 0(0 + 1 + 2)∗ + 1(21)∗(20 + 1)(0 + 1 + 2)∗ = (0 + 1(21)∗(20 + 1))(0 + 1 + 2)∗ and
E0 = 0E0 + 1(0 + 1(21)∗(20 + 1))(0 + 1 + 2)∗ + 20∗2(21)∗(20 + 1)(0 + 1 + 2)∗. So

E0 = 0∗(10 + (11 + 20∗2)(21)∗(20 + 1))(0 + 1 + 2)∗

5. (a) q4 is not reachable so we eliminate it before the do the table.

q0 q1 q2 q3 q5
q6 X X X X X
q5 X X X
q3 X X
q2 X X
q1 X

(b) The equivalent classes are {q0}, {q1, q3}, {q2, q5}, {q6}. Recall that q4 has already been elimi-
nated for not being reachable. q6 is a dead state but it shall not be eliminated!

(c) The resulting automaton is:
a b

→∗ q0 q1q3 q1q3
q1q3 q2q5 q1q3

∗q2q5 q6 q2q5
q6 q6 q6

(d) ε+ (a+ b)b∗ab∗

6. (a) L1 = 01 + 0∗ and L2 = {0n1n | n > 0}.
Here L1 ∩ L2 = {01} and L1 ∪ L2 = L2 ∪ {0n | n > 0}. It is easy to show that L1 ∪ L2 is not
regular. The proof is similar to that showing L2 is not regular: by choosing w = 0m1m with m
the constant of the pumping lemma, we can show that for any k > 1, xykz will neither be in
L2 nor in {0n | n > 0}.

(b) L1 = Σ∗ − ε (recall regular languages are closed under difference) and L2 = {0n1n | n > 0}.
L1 ∩ L2 = {0n1n | n > 1} and L1 ∪ L2 = Σ∗.

7. The expressions generate the same language and I will show it with double inclusion:

• ((a∗ + aba∗)b)∗ ⊆ ε(a + b)∗b: ((a∗ + aba∗)b)∗ generates either the empty string (ε) or a string
that ends with b. Before that b comes a sequence of a’s and b’s. Whatever that sequence is, it
can be generated by (a + b)∗; so any non-empty string in ((a∗ + aba∗)b)∗ will be generated by
(a+ b)∗b.

• ε + (a + b)∗b ⊆ ((a∗ + aba∗)b)∗: ε is clearly generated by ((a∗ + aba∗)b)∗. String generated
by (a + b)∗b end with b and before that they contain a sequence of a’s and b’s in any order.
Observe that non-empty string generated by ((a∗ + aba∗)b)∗ end with b. Observe also that
(a∗b)∗ ⊆ ((a∗ +aba∗)b)∗ and that with (a∗b)∗ we can generate any sequence of a’s and b’s which
ends with b: for each b we need in the sequence we repeat the outmost closure and generate ε
with the a∗ part of a∗b.

8. (a)
S → AB A→ a | aA B → aBc | bB | ac | b

2



(b) A generates the sequence of one or more a’s at the beginning of the word and B generates the
rest of the word.

Every a in w should generate a c in the end, this is done with the productions generating aBc
or ac (for the case we are done). We can also add any number of b’s with the productions
generating bB or b (for the case we are done).

(c) See slides 15-16 in lecture 12.

(d) Observe that the separation of the number of a’s in A and in B is given by the number of c’s:
any a in B should correspond to a c while an a in A will not. Then there no ambiguity in
whether an a should come from A or from B.

There is only one way to generate a sequence of a’s: either by generating the last a in the
sequence, or by adding one a to a sequence of a’s.

To construct the rest of the word we follow the order of the sequence of a’s and b in w. If we
need to generate an a then we should use the production aBc if we are not done, or ac if we
are done. If we need to generate a b then we should use the production bB if we are not done,
or b if we are done. So the choice of productions to use in here is unique.

(e) (1pt) Leftmost derivation: S ⇒ AB ⇒ aB ⇒ aaBc⇒ aabBc⇒ aabacc.

(2pts) Recursive inference:

i. a belongs to the language of A because A→ a;

ii. ac belongs to the language of B because B → ac;

iii. bac belongs to the language of B because B → bB and ii);

iv. abacc belongs to the language of B because B → aBc and iii);

v. aabacc belongs to the language of s because S → AB, i) and iv);

(f)
S → AB A→ a | XA X → a
B → XT | Y B | XZ | b T → BZ Y → b Z → c

9. (a) See slide 10 lecture 14.

(b) Let us assume our language L is context-free. Hence the PL should apply.

Let n be the constant given by the PL.
Let w = anbn+1cn+2. We have that w ∈ L and that |w| > n.

Hence w = xuyvz with uv 6= ε and |uyv| 6 n. Then uv will contain only one or two of the
letters, but never the three of them.

If uv contains only a’s (resp b’s), then any k > 1 will add at least an a (resp b) so that the
number of a’s (resp b’s) in xukyvkz will no longer be strictly smaller than the number of b’s
(res c’s) in the word.

If uv contains only c’s then with k = 0 we are removing at least a c and hence the number of
c’s in xukyvkz will no longer be strictly greater then the number of b’s in the word.

If uv contains both a’s and b’s then, for k > 1, we will add at least a b so that the number of
b’s in xukyvkz will no longer be strictly smaller than the number of c’s in the word.

If uv contains both b’s and c’s then, for k = 0, we will remove at least a b and hence the number
of b’s in xukyvkz will no longer be strictly greater then the number of a’s in the word.

Since these are all possible cases for uv and no of them work, then L cannot be context-free.

10.
{S,B}
{S,A,B} {S}
{S,A} {B} {A}
{B} {S,A,B} ∅ {S,A,B}
{A,C} {A,C} {B,C} {A,C} {B,C}
a a b a b

S belongs to the upper-most set, which means that the word is generated by the grammar since S is
the starting symbol of the grammar.

3



11. Let M = ({q0, ..., q6, qf}, {a, b, c}, δ, q0,�, {qf}), with δ is as follows:

δ(q0, a) = (q0, a, R) any number of a’s can be present at the beginning;
δ(q0, c) = (q1, c, R) we read a c, now it can come another c or a b;
δ(q1, c) = (q2, c, R) we read another c, so after the b’s we need to read two c’s!
δ(q1, b) = (q3, b, R) we read a b, now more b’s can come but then only a single c;
δ(q2, b) = (q4, b, R) we read a b, now more b’s can come and then two c’s;
δ(q3, b) = (q3, b, R) any number of extra b’s is fine;
δ(q3, c) = (q6, c, R) we read the only c we were expecting, now only a blank symbol

can come;
δ(q4, b) = (q4, b, R) any number of extra b’s is fine;
δ(q4, c) = (q5, c, R) we read the first of the two c’s we were expecting;
δ(q5, c) = (q6, c, R) we read the second c we were expecting, now only a blank symbol

can come;
δ(q6,�) = (qf ,�, R) we have a right tape so we accept.

The Turing decider moves only to the right. It will halt when the sequence of symbols is not correct,
or it will end up in the final state when the sequence is correct and needs to be accepted.

q0 reads any number of a’s.
If w = c then the TM moves q1 → q3 → q6. Here q3 checks that at least a b comes, and even read
extra b’s.
If w = cc then the TM moves q1 → q2 → q4 → q5 → q6. Here q4 checks that at least a b comes, and
even read extra b’s.
q6 makes sure nothing else comes after the last c in w.

4


