
Finite Automata Theory and Formal Languages
TMV027/DIT321 (6 hec) — Responsible: Ana Bove, tel: 1020

Wednesday 1st of June 2016

Total: 60 points
CTH: > 27: 3, > 38: 4, >49: 5 GU: >27: G, >45: VG

No help material but dictionaries to/from English or Swedish.

Write in English or Swedish, and as readable as possible (think that what we cannot read we cannot correct).

OBS: All answers should be well motivated. Points will be deduced when you give an unnecessarily
complicated solution or when you do not properly justify your answer.

Good luck!

1. (5.5pts) Consider the following context-free grammar with start symbol S:

S → aaS | SS | ab

Prove using induction that any word generated by the grammar has an even length, it starts with
an a and it finishes with a b.

Do not forget to clearly state the property you will prove, which kind of induction you will use, the
base case(s) and the inductive hypothesis(es)!

2. (4.5pts) Construct a finite automaton without ε-transitions that recognises the language over {0, 1, 2}
where words do not contain 012 as substring OR have an even number of 0’s and 1’s (together).

3. (5.5pts) Convert the following ε-NFA into an equivalent DFA.

0 1 ε
→ q0 {q0, q1} {q2} {q5}
q1 {q3} {q1} ∅
q2 {q2, q4} ∅ {q1}
q3 {q5} {q1} {q4}
q4 {q5} {q3, q4} ∅
∗q5 ∅ ∅ {q0}

4. (4.5pts) Compute, using any of the methods given in class (NOT your intuition!), a regular expression
generating the language accepted by the DFA below.

0 1 2
→ q0 q1 q0 q2
q1 q1 q2 q3
q2 q1 q3 q2
∗q3 q3 q3 q3

Solve/eliminate first q1, then q2 and finally q3 (if you use equations). Show enough intermediate
steps so we can follow what you are doing!

1

5. (4.5pts) Minimise the following DFA using the method given in class (NOT your intuition!)

a b
→∗ q0 q1 q0

q1 q2 q3
q2 q2 q2
q3 q0 q6
q4 q2 q3
q5 q4 q6
q6 q5 q6

Show the table that identifies the distinguishable states, give the equivalent classes of states and the
new automaton.

6. (a) (1pts) State the Pumping lemma for regular languages.

(b) (5pts) Which of the following languages over {0, 1} are regular? Give a regular expression or
use the Pumping lemma for regular languages to justify your answer.

i. L1 = {w | #0(w) = 2×#1(w) ∨#0(w) = 3×#1(w)}, where #0 and #1 are the functions
that count the numbers of 0’s and 1’s respectively in a word.

ii. L2 = L1 ∩ {w | |w| 6 5}.

7. (a) (5.5pts) Give a non-ambiguous context-free grammar generating the language

{anbmckdl | n+m = k − l}. Consider that k − l = 0 if l > k.

(b) (3.5pts) Explain the grammar, why it produces exactly this language and why it is non-
ambiguous.

(c) (2pts) Give the leftmost derivation of a word with two more c’s than d’s, and the parse tree of
a word with two more d’s than c’s.

8. Consider the following grammar with start symbol S:

S → ab | ASB | CSD A→ aA | B B → ε | Bb C → c | cC | D
D → dD | eE E → EE F → FF | f

(a) (2pts) State which are the nullable variables in the grammar and eliminate the ε-productions.

(b) (2pts) State which are the unit productions in the grammar from a) and eliminate them.

(c) (1.5pt) State which are non-generating symbols in the grammar from b) and eliminate them.

(d) (1.5pt) State which are non-reachable symbols in the grammar from c) and eliminate them.

(e) (2pts) Convert the simplified grammar into Chomsky normal form.

9. (4pts) Consider the following grammar with start symbol S:

S → AB | c A→ a | SA | BA B → b | SB | AB

Apply the CYK algorithm to determine if the string accab is generated by this grammar. Show the
resulting table and justify your answer.

10. (a) (4pts) Define a Turing machine that determines if the input tape is of the form 02n1122m for
n,m > 0. Give either the transition function of the machine or its transition diagram. You can
assume that the initial tape only contains symbols in {0, 1, 2} (in addition to the blank symbol).

(b) (1.5pts) Is your machine a Turing decider? Justify your answer.

2

Solutions Exam 160601

Here we only give a brief explanation of the solution. Your solution should in general be more elabo-
rated than these ones.

1. Our property is: P (n) : if S ⇒n w then the length of w is even, w starts with an a and it finishes
with a b.

We will use course-of-value induction on the length of the derivation (number of steps) S ⇒n w.

Base case: S ⇒ w, hence the rule applied should have been S → ab.

Here, the length of ab is 2, it starts with a and finishes with b.

Step case: Our IH is: if S ⇒∗ w in at most n > 0 steps then the length of w is even, w starts with
an a and it finishes with a b.

Let S ⇒∗ w in n+ 1 steps with n > 0.

Since n > 0 then the first rule applied should have been S → aaS or S → SS.

In the case the first rule was S → aaS then w = aaw′ with S ⇒∗ w′ in n steps. Then the IH applies
for w′. Since the length of w′ is even (by IH) so is the length of aaw′. aaw′ clearly starts with a and
since w′ ends with b (by IH) so does aaw′.

In the case the first rule was S → SS then w = w′w′′ with S ⇒∗ w′ and S ⇒∗ w′′, each in at most
n steps. Then the IH applies for both w′ and w′′. Since the length of w′ and of w′′ are even (by IH)
so is the lengths of w′w′′. Since w′ starts with an a (by IH) so does w′w′′. Finally, since w′′ ends
with a b (by IH) so does w′w′′.

2. We define a NFA:
0 1 2

→∗ q0 {q1, q4} {q2, q4} {q0}
∗q1 {q1} {q3} {q2}
∗q2 {q1} {q2} {q2}
q3 {q1} {q2} ∅
q4 {q5} {q5} {q4}
∗q5 {q4} {q4} {q5}

3.
0 1

→∗ q0q5 q0q1q5 q1q2
∗q0q1q5 q0q1q3q4q5 q1q2

∗q0q1q3q4q5 q0q1q3q4q5 q1q2q3q4
q1q2 q1q2q3q4 q1
q1 q3q4 q1

q1q2q3q4 q0q1q2q3q4q5 q1q3q4
q1q3q4 q0q3q4q5 q1q3q4
q3q4 q0q5 q1q3q4

∗q0q3q4q5 q0q1q5 q1q2q3q4
∗q0q1q2q3q4q5 q0q1q2q3q4q5 q1q2q3q4

3

4. I will solve equations:

E0 = 0E1 + 1E0 + 2E2 E0 = 00∗1E2 + 00∗2E3 + 1E0 + 2E2 = 1E0 + (00∗1 + 2)E2 + 00∗2E3

E1 = 0E1 + 1E2 + 2E3 E1 = 0∗(1E2 + 2E3) = 0∗1E2 + 0∗2E3

E2 = 0E1 + 2E2 + 1E3 E2 = 00∗1E2 + 00∗2E3 + 2E2 + 1E3 = (00∗1 + 2)E2 + (00∗2 + 1)E3

E3 = (0 + 1 + 2)E3 + ε

E0 = 1E0 + (00∗1 + 2)(00∗1 + 2)∗(00∗2 + 1)E3 + 00∗2E3 = 1E0 + ((00∗1 + 2)+(00∗2 + 1) + 00∗2)(0 + 1 + 2)∗

E2 = (00∗1 + 2)∗(00∗2 + 1)E3

E3 = (0 + 1 + 2)∗

Hence (recall 0+ = 00∗)

E0 = 1∗((0+1 + 2)+(0+2 + 1) + 0+2)(0 + 1 + 2)∗

5.
q0 q1 q2 q3 q4 q5

q6 X X X X X X
q5 X X X X X
q4 X X X
q3 X X X
q2 X X
q1 X

The equivalent classes are {q0}, {q1, q4}, {q2}, {q3}, {q5}, {q6}.
The resulting automaton is:

a b
→ q0 q1q4 q0
q1q4 q2 q3
q2 q2 q2
q3 q0 q6
q5 q1q4 q6
q6 q5 q6

6. (a) See slide 8 lecture 8.

(b) i. (3.5pts) Let us assume L1 is a regular language. Hence the PL should apply.
Let n be the constant given by the PL.
Let w = 03n1n. We have that w ∈ L1 and that |w| > n.
Hence w = xyz with y 6= ε and |xy| 6 n.
So y should contain only 0’s and at least one 0.
For any k > 1 then xykz will contain more than 3n 0’s (and hence more than 2n 0’s) while
only n 1’s. Hence, xykz /∈ L1 which contradicts the PL.
Then, L1 cannot be regular.

ii. (1.5pts) L2 = ε+ 100 + 010 + 001 + 1000 + 0100 + 0010 + 0001.

7. (a)
S → A | AD | BA
A→ ε | cAd B → ac | aBc | C
D → d | dD C → bc | bCc

(b) We can divide the situation into 3 (mutually exclusive) cases: l = k, l > k and l < k.

Observe that if l > k then n+m = k − l = 0 and hence there are neither a’s nor b’s.

A will generate the case where l = k, even the empty word (l = k = 0),

4

AD generates the case where l > k, hence there are more d’s than c’. A will generate as many
c’s as d’s (even 0) and then D will generate the extra d’s, of which there should be at least one.

BA generates the case where l < k, hence there are more c’s than d’. Here again A will generate
as many c’s as d’s (even 0).
Now, for every extra c we need to make sure we add either an a or a b.
B will start putting as many a’s as needed (adding alway a c for each a). If no a should be
present we can directly go to C.
C will then put the necessary b’s with their corresponding c’s.
Observe that even the case where no b is present is also considered.
Note that any n and m determines a unique derivations.

Given this explanation it is easy to see that there is only one possible derivation for each word
and hence the grammar is non-ambiguous.

(c) I present just leftmost derivations here, you will need to give the parse tree of the second one
instead.

S ⇒ BA⇒ aBcA⇒ aCcA⇒ abccA⇒ abcc

S ⇒ AD ⇒ cAdD ⇒ cdD ⇒ cddD ⇒ cddd

8. (a) B and A are nullable.

S → ab | ASB | SB | AS | S | CSD A→ a | aA | B B → b | Bb C → c | cC | D
D → dD | eE E → EE F → FF | f

(b) unit productions: S → S,A→ B,C → D

S → ab | ASB | SB | AS | CSD A→ a | aA | b | Bb B → b | Bb C → c | cC | dD | eE
D → dD | eE E → EE F → FF | f

(c) non-generating symbols: D,E

S → ab | ASB | SB | AS A→ a | aA | b | Bb B → b | Bb C → c | cC F → FF | f

(d) non-reachable symbols: C, c, F, f

S → ab | ASB | SB | AS A→ a | aA | b | Bb B → b | Bb

(e)
S → PQ | AX | SB | AS A→ a | PA | b | BQ B → b | BQ
P → a Q→ b X → SB

9.
{S,B}
∅ {S,B}
∅ {A} {S,B}
∅ ∅ {A} {S,B}
{A} {S} {S} {A} {B}
a a c b a

S belongs to the upper-most set, which means that the word is generated by the grammar since S is
the starting symbol of the grammar.

5

10. (a) Let Σ = {0, 1, 2}.
Let M = ({q0, ..., q4, qf},Σ, δ, q0,�, {qf}), with δ is as follows:

δ(q0, 0) = (q1, 0, R) we have seen an odd nr of 0’s so weq1 will look for another one;
δ(q1, 0) = (q0, 0, R) so far we have seen an even number of 0’s;
δ(q0, 1) = (q2, 1, R) we have seen an even nr of 0’s and now we see the first one;
δ(q2, 1) = (q3, 1, R) here comes the second 1;
δ(q3, 2) = (q4, 2, R) we have seen an odd nr of 2’s so q4 will look for another one;
δ(q3,�) = (qf ,�, R) we have seen an even nr of 0’s, then two 1’s and an even nr of 2’s;

the input has finished so we can accept;
δ(q4, 2) = (q3, 2, R) so far the input is good;

(b) Yes, it is a Turing decider. Whenever the input is not of the correct form the delta function is
not defined so the machine will halt.
Observe that no state has a transition to itself (loop). The only “loops” in the running of the
machine is when we count the parity of 0’s (q0 and q1) and of 2’s (q3 and q4), but the loop will
end as soon as another symbol is read.

6

