Finite Automata Theory and Formal Languages TMV027/DIT321 - LP4 2018

Context-free Grammars

Assignment 5 - Deadline: Sunday 13th of May 23:59
 Assignments should be done and submitted individually!

For obtaining full points the answers should contain enough explanation/description so that they are easy to understand.

1. (3 pts) Consider the following grammar over the alphabet $\{0,1\}$:

$$
S \rightarrow 010|0 S| S 10 \mid S S
$$

Prove that for any $w \in \mathcal{L}(S), \#_{1}(w) \leqslant \#_{0}(w)$ where $\#_{0}$ and $\#_{1}$ are functions that count the number of 0 's and of 1 's, respectively, in w.
Do not forget to clearly state the property you are proving, which kind of induction you are using, the base case and the inductive hypothesis!
2. Consider the language $\left\{a^{i} b^{j} c^{k} \mid 0<i+j \leqslant k\right\}$.
(a) (2 pts) Give a context-free grammar that generates the above language.
(b) (0.75 pts$)$ Explain your grammar and why it constructs the required language.
(c) $(0.5 \mathrm{pts})$ Is this grammar ambiguous? Justify your answer.
(d) (0.75 pts$)$ Give the recursive inference, the leftmost derivation and the parse tree for the word abbcccc.
3. Consider the following grammar with start variable S :

$$
S \rightarrow \epsilon|a| b|A b| a B \quad A \rightarrow a S|a \quad B \rightarrow S b| b
$$

(a) (1.25 pts) Describe as formal as you can the language generated by the grammar.
(b) (0.5 pts$)$ Show that this grammar is ambiguous.
(c) $(0.75 \mathrm{pts})$ Construct an unambiguous grammar which generates exactly this language.
(d) (0.5 pts$)$ Motivate why the new grammar is not ambiguous.

