Finite Automata Theory and Formal Languages TMV027/DIT321 - LP4 2018

Regular Languages

Assignment 4 - Deadline: Sunday 29th of April 23:59
 Assignments should be done and submitted individually!

For obtaining full points the answers should contain enough explanation/description so that they are easy to understand.

1. (2.5pts) Show as formal and clear as possible that $a^{*}\left(b+a b^{*}\right)=b+a a^{*} b^{*}$.
2. Give concrete examples of languages \mathcal{L}_{1} and \mathcal{L}_{2} over the alphabet $\{0,1\}$ such that
(a) (1pt) Both \mathcal{L}_{1} and \mathcal{L}_{2} are non-regular, but $\mathcal{L}_{1} \cup \mathcal{L}_{2}$ is regular;
(b) (1pt) Both \mathcal{L}_{1} and \mathcal{L}_{2} are non-regular, and $\mathcal{L}_{1} \cap \mathcal{L}_{2}$ is infinite and non-regular;
(c) (1pt) \mathcal{L}_{1} is regular, \mathcal{L}_{2} is non-regular, and $\mathcal{L}_{1} \cup \mathcal{L}_{2}$ is regular

Justify your answer by explicitly giving the resulting language in each case. If it is not easily clear why the languages are regular/non-regular, you need to even justify this.
3. (2.25pts) Use the Pumping lemma for regular languages to show that the language $\left\{w \in\{0,1,2\}^{*} \mid \#_{0}(w)+\#_{1}(w)=\#_{2}(w)\right\}$ is not a regular language, where $\#_{0}, \#_{1}$ and $\#_{2}$ are functions counting the number of 0 's, 1 's and of 2's, respectively, in a word.
4. Minimise the following automaton:

	0	1
$\rightarrow^{*} q_{0}$	q_{1}	q_{3}
q_{1}	q_{4}	q_{2}
${ }^{*} q_{2}$	q_{1}	q_{5}
q_{3}	q_{0}	q_{4}
q_{4}	q_{4}	q_{4}
q_{5}	q_{2}	q_{4}

(a) (1.5pts) Show the table that identifies the distinguishable states;
(b) (0.3pts) Indicate the equivalent clases of states resulting from the information in the table;
(c) (0.45pts) Give the minimised automaton.

