Finite Automata Theory and Formal Languages TMV027/DIT321 - LP4 2018

ϵ-NFA and RE

Assignment 3 - Deadline: Sunday 22nd of April 23:59

Assignments should be done and submitted individually!

For obtaining full points the answers should contain enough explanation/description so that they are easy to understand.

1. (2.75pts) Convert the following ϵ-NFA into a DFA by using the method explained in class (please keep the names of the states to facilitate correction):

	ϵ	0	1
$\rightarrow q_{0}$	\emptyset	$\left\{q_{1}\right\}$	$\left\{q_{0}, q_{2}\right\}$
q_{1}	$\left\{q_{2}\right\}$	$\left\{q_{4}\right\}$	$\left\{q_{3}\right\}$
q_{2}	\emptyset	$\left\{q_{1}, q_{4}\right\}$	$\left\{q_{3}\right\}$
q_{3}	$\left\{q_{5}\right\}$	$\left\{q_{4}, q_{5}\right\}$	\emptyset
q_{4}	$\left\{q_{3}\right\}$	\emptyset	$\left\{q_{5}\right\}$
${ }^{*} q_{5}$	\emptyset	$\left\{q_{5}\right\}$	$\left\{q_{5}\right\}$

2. (1.5pts) Let Σ be $\{0,1\}$. Use your intuition and give a NFA without ϵ-transitions which recognises the language generated by the regular expression $\left(0+01^{*}\right)^{*}(\epsilon+1) 1(\epsilon+0+1)^{*}$.
3. (1.25pts) Define a regular expresion generating the language over the alphabet $\{0,1\}$ where words start and end with a 1 , have a length of at least two and where every 0 in the word is immediately followed by at least a 1 .
Example of accepted words: 1010111, 1101, 1011010111, 11
Example of non accepted words: 10011, 100011
4. Consider the following DFA, where "-" indicates no possible movement for the input:

$$
\begin{array}{r||c|c|c}
& 0 & 1 & 2 \\
\hline \rightarrow q_{0} & q_{0} & q_{1} & q_{2} \\
q_{1} & - & q_{3} & q_{2} \\
q_{2} & - & q_{1} & q_{4} \\
q_{3} & q_{4} & - & q_{3} \\
{ }^{*} q_{4} & - & q_{4} & -
\end{array}
$$

Construct the regular expression that corresponds to the DFA above by
(a) (2.25pts) Eliminating states: eliminate first q_{3}, then q_{2}, and finally q_{1};
(b) (2.25pts) Solving equations: solve and eliminate E_{4}, then solve and eliminate E_{3}, eliminate E_{2}, solve and eliminate E_{1}, finally solve E_{0}.

Show enough information in the process so we can follow what you do.

