Finite Automata Theory and Formal Languages TMV027/DIT321 - LP4 2018

DFA and NFA

Assignment 2 - Deadline: Sunday 15th of April 23:59

Assignments should be done and submitted individually!

For obtaining full points the answers should contain enough explanation/description so that they are easy to understand.

1. (1pt) Describe with words the language accepted by the following DFA:

	0	1	2
$\rightarrow q_{0}$	q_{1}	q_{0}	q_{2}
q_{1}	q_{2}	q_{1}	q_{1}
${ }^{*} q_{2}$	q_{2}	q_{2}	q_{2}

Note: You are not asked to describe the δ function with words nor to explain when a word is accepted. You are asked to describe as best as you can which are the words in the language (for example "words starting with 0 , ending with 1 and having an even number of 2 's").
2. (1.5pts) Define a DFA that accepts the language over the alphabet $\{0,1\}$ where words start and end with a 1 , have even length and where any 0 in the word is immediately followed by at least a 1 .

Example of accepted words: 1011, 101101, 1111
Example of non accepted words: 101, 1001, 010
3. Consider the alphabet $\Sigma=\{a, b\}$.
(a) (1pt) Define a DFA accepting the words over Σ which do not contain $b b a$ as substring.
(b) (0.5pts) Define a DFA accepting the words over Σ with an even number of a 's.
(c) (1.5pts) Use the product construction to give a DFA accepting the words over Σ which satisfy both of the above criteria.
4. (a) (2.5pts) Give an NFA that accepts the language over the alphabet $\{a, b\}$ where words contain baa as substring or where any a is immediately followed by at least two b 's.
(b) (2pts) Use the subset construction to build the corresponding DFA.

