Finite Automata Theory and Formal Languages TMV027/DIT321 – LP4 2018

DFA and NFA

Assignment 2 – Deadline: Sunday 15th of April 23:59 Assignments should be done and submitted individually!

For obtaining full points the answers should contain enough explanation/description so that they are easy to understand.

1. (1pt) Describe with words the language accepted by the following DFA:

	0	1	2
$\rightarrow q_0$	q_1	q_0	q_2
q_1	q_2	q_1	q_1
$^{*}q_{2}$	q_2	q_2	q_2

Note: You are not asked to describe the δ function with words nor to explain when a word is accepted. You are asked to describe as best as you can which are the words in the language (for example "words starting with 0, ending with 1 and having an even number of 2's").

2. (1.5pts) Define a DFA that accepts the language over the alphabet $\{0, 1\}$ where words start and end with a 1, have even length and where any 0 in the word is immediately followed by at least a 1.

Example of accepted words: 1011, 101101, 1111

Example of non accepted words: 101, 1001, 010

- 3. Consider the alphabet $\Sigma = \{a, b\}$.
 - (a) (1pt) Define a DFA accepting the words over Σ which do not contain *bba* as substring.
 - (b) (0.5pts) Define a DFA accepting the words over Σ with an even number of *a*'s.
 - (c) (1.5pts) Use the product construction to give a DFA accepting the words over Σ which satisfy both of the above criteria.
- 4. (a) (2.5pts) Give an NFA that accepts the language over the alphabet $\{a, b\}$ where words contain *baa* as substring or where any *a* is immediately followed by at least two *b*'s.
 - (b) (2pts) Use the subset construction to build the corresponding DFA.