Lecture 8

Ana Bove

April 16th 2018

o Product of NFA as for DFA, accepting intersection of languages;

o Union of languages comes naturally, complement not so “immediate”;
o By allowing e-transitions we obtain e-NFA:

o Defined by a 5-tuple (Q, X, 9, qo, F);

0 6:Qx(XU{e}) = Pow(Q);

o ECLOSE needed for §;
Accept set of words x such that 8(go, x) N F # ;

(%}

Given a e-NFA E we can convert it to a DFA D such that
L(E) = L(D);

Hence, also accept the so called regular language.

©

©

April 16th 2018, Lecture 8 TMV027/DIT321 1/26

Overview of Today's Lecture

o Regular expressions;
o Brief on algebraic laws for regular expressions;
o Equivalence between FA and RE: from FA to RE.

Contributes to the following learning outcome:

@ Explain and manipulate the different concepts in automata theory and formal
languages;

@ Have a clear understanding about the equivalence between (non-)deterministic
finite automata and regular expressions;

@ Understand the power and the limitations of regular languages
@ Design automata, regular expressions
generating a certain language;

@ Describe the language accepted by an automata or generated by a regular
expression :

@ Determine if a certain word belongs to a language;
Q@ Differentiate and manipulate formal descriptions of languages, automata

April 16th 2018, Lecture 8 TMV027/DIT321 2/26

Regular Expressions

Regular expressions (RE) are an algebraic way to denote languages.

RE are a simple way to express the words in a language.

Example: grep command in UNIX (K. Thompson) takes a (variation) of a RE as input.

We will show that RE are as expressive as DFA and hence, they define all
and only the regular languages.

April 16th 2018, Lecture 8 TMV027/DIT321 3/26

Inductive Definition of Regular Expressions

Definition: Given an alphabet X, we inductively define the regular
expressions over X as follows:

Base cases: @ The constants () and € are RE;
o If ae X then ais a RE.

Inductive steps: Given the RE R and S, then

o R+ S and RS are RE;
o R* is RE.

The precedence of the operands is the following:

@ The closure operator ™ has the highest precedence;
@ Next comes concatenation;
@ Finally, comes the operator +;

@ We use parentheses (,) to change the precedence.

(Compare with exponentiation, multiplication and addition on numbers.)

April 16th 2018, Lecture 8 TMV027/DIT321 4/26

Another Way to Define the Regular Expressions

Another way to define the regular expressions is by giving the following
BNF (Backus-Naur Form), for a € ¥:

R:=0|e|lal]R+R|RR|R*

alternatively
R,S:=0|e|la|R+S|RS|R"

Note: BNF is a way to declare the syntax of a language.

It is very useful when describing context-free grammars and in particular the syntax of

(big parts of) most programming languages.

April 16th 2018, Lecture 8 TMV027/DIT321 5/26

Functional Representation of Regular Expressions

data RExp a = Empty | Epsilon | Atom a |
Plus (RExp a) (RExp a) |
Concat (RExp a) (RExp a) |
Star (RExp a)

For example the expression b + (bc)* is given as

Plus (Atom "b") (Star (Concat (Atom "b") (Atom "c")))

April 16th 2018, Lecture 8 TMV027/DIT321 6/26

Language Defined by the Regular Expressions

Definition: Given a RE R, the language L(R) generated/defined by it is
defined by recursion on the expression:

Base cases: o L(0) = 0;

o L(e) = {e};
o Given ae X, L(a) = {a}.

Recursive cases: o L(R+ S) = L(R)U L(S);
o L(RS) = L(R)L(S);
o L(R*) = L(R)".

Note: x € L(R) iff x is generated by R.

Notation: We write x € L(R) or x € R indistinctly.

April 16th 2018, Lecture 8 TMV027/DIT321

Example of Regular Expressions
Let ¥ ={0,1}:

9 0" +1* = {¢,0,00,000,...} U{e 1,11,111,.. .}

o (0+1)* = {¢,0,1,00,01, 10, 11,000, 001, 010, 011, 100, 101, ...}
o (01)* = {¢,01,0101, 010101, ...}

o (000)* = {e, 000,000000, 000000000, . ..}

@ 01* +1={0,01,011,0111,...} U {1}

o ((0(1*)) +1) = {0,01,011,0111,...} U {1}

o (01)* + 1 = {¢,01,0101,010101, ...} U {1}

@ (e+1)(01)*(e +0) = (01)* + 1(01)* + (01)*0 + 1(01)*0

@ (01)* +1(01)* + (01)*0 4 1(01)*0 = ...

What do they mean? Are there expressions that are equivalent?
April 16th 2018, Lecture 8 TMV027/DIT321 8/26

Algebraic Laws for Regular Expressions (more on this next lecture)

The following equalities hold for any RE R, S and T:

Idempotent: R+ R =R

Commutative: R+S=S5S+R In general, RS # SR
Associative: R+ (S+ T)=(R+S)+ T R(ST)=(RS)T
Distributive: R(S+ T)= RS+ RT (S+ T)R=SR+ TR

Identity: R+0=0+R=R Re=eR=R

Annihilator: RO =0R =
RT = RR* = R*R
R* = (R*)* = R*R* = e+ R"

Note: Compare (some of) these laws with those for sets on slide 14 lecture 2.

April 16th 2018, Lecture 8 TMV027/DIT321 9/26

Other useful laws to simplify regular expressions are:

o Shifting rule: R(SR)* = (RS)*R

o Denesting rule: (R*S)*R* = (R+ S)*
Note: By the shifting rule we also get R*(SR*)* = (R + S)*

o Variation of the denesting rule: (R*S)* =e¢+ (R+ S)*S

Note: These rules are not always trivial to apply ... :-)

April 16th 2018, Lecture 8 TMV027/DIT321

Theorem: If L is a regular language then there exists a RE R such that
L= L(R).

Proof: Recall that each regular language has a FA that recognises it.

We shall construct a RE from such automaton.

We shall see 2 ways of constructing a RE from a FA:

O Eliminating states (section 3.2.2);

@ By solving a linear equation system using Arden's Lemma.

(OBS: not in the book!)

April 16th 2018, Lecture 8 TMV027/DIT321 11/26

If we remove g,
we should keep all paths

going through it 7
If we remove g
we should keep all paths

going through it

Final RE: 071(01)*1(1 + 0(01)*1)*.

April 16th 2018, Lecture 8

Let the FA A be:

1+ 0(01)*1

TMV027/DIT321

April 16th 2018, Lecture 8

TMV027/DIT321

If an arc does not
exist in A, then it is
labelled () here.

For simplification, we
assume the g's are

different from the p's.

13/26

When we eliminate the state s, all the paths that went through s do not
longer exists!

To preserve the language of the automaton we must include, on an arc
that goes directly from g to p, the labels of the paths that went from g to
p passing through s.

Labels now are not just symbols but (possible an infinite number of)
strings: hence we will use RE as labels.

April 16th 2018, Lecture 8 TMV027/DIT321

Ri1 + Q15" P;

April 16th 2018, Lecture 8 TMV027/DIT321 15/26

From FA to RE: Eliminating States in A

For each accepting state g we eliminate states until we have gg and g left.

For each accepting state g we have 2 cases: gp = q or qg # q.

If go = g R

The expression is R*.

If g0 # q:

S
The expression is (R + SU*T)*SU*.

7

The final RE is the sum of the expressions derived for each final state.

April 16th 2018, Lecture 8 TMV027/DIT321 16/26

Example: RE Representing Gilbreath'’s Principle

Recall:

Observe: Eliminating q is trivial. Eliminating g1g3 and g»qs is also easy.

April 16th 2018, Lecture 8 TMV027/DIT321 17/26

Example: RE Representing Gilbreath’s Principle

After eliminating g, g1g3 and g>qs we get:

G

0" "G
\RA
T

o RE when final state is gpg3q40s:
(RB + BR)(RB + BR)* = (RB+ BR)™

o RE when final state is goqags: (RB + BR)(RB)*B(R(RB)*B)*
o RE when final state is g1g3g5: (RB + BR)(BR)*R(B(BR)*R)*

April 16th 2018, Lecture 8 TMV027/DIT321 18/26

Example: RE Representing Gilbreath'’s Principle

The final RE is the sum of the 3 previous expressions.

Let us first do some simplifications.

(RB + BR)(RB)*B(R(RB)*B)* = (RB + BR)(RB)*(BR(RB)*)*B by shifting
= (RB + BR)(RB + BR)*B by the shifted-denesting rule
= (RB+ BR)'B

Similarly (RB + BR)(BR)*R(B(BR)*R)* = (RB + BR)"R.

Hence the final RE is
(RB+ BR)" + (RB + BR)"B+ (RB+ BR)™R
which is equivalent to

(RB + BR) (e + B + R)

April 16th 2018, Lecture 8 TMV027/DIT321

From FA to RE: Linear Equation System

To any FA we associate a system of equations with REs as solution.

To every state g; we associate a variable E;.

Each E; represents the set {x € ¥* | §(qj,x) € F} (for DFA).

Then Ej represents the set of words accepted by the FA.

The solution to the linear system of equations associates a RE to each
variable E;.

The solution for Eg is the RE generating the same language that is
accepted by the FA.

April 16th 2018, Lecture 8 TMV027/DIT321 20/26

From FA to RE: Constructing the Linear Equation System

Consider a state g; and all the transactions coming out of it:

If there is no arrow coming out of g;
then E; = () if g; is not final

‘ or E; = € if g; is final

Here we have the equation
E,-:a,-1E1+...—|—a,-jEj+...+a,-nE,,

If g; is final then we add ¢
E,-:e—|—a,-1E1—|—...+a,-jEj—|—...—|—a,-,,E,,

April 16th 2018, Lecture 8 TMV027/DIT321 21/26

From FA to RE: Solving the Linear Equation System

Lemma: (Arden) A solution to X = RX + S is X = R*S. Furthermore, if
e ¢ L(R) then this is the only solution to the equation X = RX + S.

Proof: (sketch) We have that R* = RR™ + e.

Hence R*S = RR*S + S and then X = R*S is a solution to X = RX + S.

One should also prove that:

@ Any solution to X = RX + S contains at least R*S;

Q If e ¢ L(R) then R*S is the only solution to the equation X = RX + S (that is, no
solution is “bigger’ than R*S).

See for example Theorem 6.1, pages 185-186 of Theory of Finite Automata, with an
introduction to formal languages by John Carroll and Darrell Long, Prentice-Hall

International Editions.

April 16th 2018, Lecture 8 TMV027/DIT321 22/26

Example: RE Representing Automaton in Slide 12

Eo =0Ey+1E E =0E, +1E3
E»=0E +1E E3=0E +1E;+e¢ Ex=(0+1)E
We solve Ex: E, = (0+1)*0 =10

Eo =0Ey+ 1E Ei1 =01E + 1E3

We eliminate E, and Ej: E: — OF; + 1E; & ¢
3 — W=l 3

We solve Eli E1 = (01)*1E3
We eliminate E1: Eg = 0Ey + 1(01)*1E3 E; = 0(01)*1E3 +1E3+¢€

We solve Ej:
E; = (0(01)*1 4+ 1)E3 + e = E3 = (0(01)*1 + 1)*e = (0(01)*1 + 1)*

We eliminate E3: Ey = 0Ep + 1(01)*1(0(01)*1 + 1)*
We solve Ey: Eo = 0%1(01)*1(0(01)*1 + 1)*

April 16th 2018, Lecture 8 TMV027/DIT321 23/26

Example: RE Representing Gilbreath’s Principle

We obtain the following system of equations (see slide 17):

Eo = RE13 + BEoy Eo34s = € + BE2gs + REi3s

E13 = BEg3s4s + REq Enas = € + REg3ss + BE,

Ex4 = REo3ss + BE; Ei35 = € + BEgaas + REq
Eq = (B+ R)Eq

Since E; = (B + R)*() = (), this can be simplified to:

Eo = REi3 + BEys Egzas = € + BEyss + REj3s

E13 = BEoy3zss Ez45 = € + REo3zas
E>xs = REp3s5 E135 = € + BEp3as
April 16th 2018, Lecture 8 TMV027/D|T321

Example: RE Representing Gilbreath'’s Principle

And further to:

Eo = (RB + BR)Eyzas
Eo3a5 = (RB + BR)E0345 +e+B+R

Then a solution to Egzss is

(RB + BR)*(e + B + R)

and the RE which is the solution to the problem is
(RB + BR)(RB + BR)*(e + B+ R)

or
(RB+ BR)Y(e+ B+ R)

April 16th 2018, Lecture 8 TMV027/DIT321

24/26

Sections 3.2.3, 3.4, 4-4.2.1, and notes on Pumping lemma:

o Equivalence between FA and RE: from RE to FA;
o More on algebraic laws for regular expressions;
o Pumping Lemma for RL;

o Closure properties of RL.

April 16th 2018, Lecture 8 TMV027/DIT321 26/26

