
Finite Automata Theory and Formal Languages

TMV027/DIT321– LP4 2018

Lecture 7

Ana Bove

April 12th 2018

Recap: Non-deterministic Finite Automata

Defined by a 5-tuple (Q,Σ, δ, q0,F);

Why “non-deterministic”?;

δ : Q × Σ → Pow(Q);

Easier to define for some problems;

Accept set of words x such that δ̂(q0, x) ∩ F 6= ∅;

Given a NFA N we apply the subset construction to get a DFA D ...

... such that L(N) = L(D);

Hence, NFA also accept the so called regular language.

April 12th 2018, Lecture 7 TMV027/DIT321 1/23

Overview of Today’s Lecture

More on NFA;
NFA with ǫ-Transitions;
Equivalence between DFA and ǫ-NFA;

Contributes to the following learning outcome:

Explain and manipulate the different concepts in automata theory and formal
languages;

Have a clear understanding about the equivalence between (non-)deterministic
finite automata and regular expressions;

Understand the power and the limitations of regular languages and context-free
languages;

Design automata, regular expressions and context-free grammars accepting or
generating a certain language;

Describe the language accepted by an automata or generated by a regular
expression or a context-free grammar;

Determine if a certain word belongs to a language;

Differentiate and manipulate formal descriptions of languages, automata and
grammars.

April 12th 2018, Lecture 7 TMV027/DIT321 2/23

A Bad Case for the Subset Construction

Proposition: Any DFA recognising the same language as the NFA below
has at least 2n states:

q0 q1 q2 qn−1 qn

0, 1

1 0, 1 0, 1 0, 1 0, 1...

This NFA recognises strings over {0, 1} such that the nth symbol from the
end is a 1.

Proof: Let Ln = {x1u | x ∈ Σ∗, u ∈ Σn−1} and D = (Q,Σ, δ, q0,F) a DFA.

We want to show that if |Q| < 2n then L(D) 6= Ln.

April 12th 2018, Lecture 7 TMV027/DIT321 3/23

A Bad Case for the Subset Construction (Cont.)

Lemma: If Σ = {0, 1} and |Q| < 2n then there exist x , y ∈ Σ∗ and
u, v ∈ Σn−1 such that δ̂(q0, x0u) = δ̂(q0, y1v) in the DFA D.

Proof: Let us define a function h : Σn → Q such that h(z) = δ̂(q0, z).

h cannot be injective because |Q| < 2n = |Σn|.

So h sends 2 different words to the same image: a1 . . . an 6= b1 . . . bn but

h(a1 . . . an) = δ̂(q0, a1 . . . an) = δ̂(q0, b1 . . . bn) = h(b1 . . . bn)

Let us assume that ai = 0 and bi = 1.

Let x = a1 . . . ai−1, y = b1 . . . bi−1, u = ai+1 . . . an0
i−1, v = bi+1 . . . bn0

i−1.

Hence (recall that for a DFA, δ̂(q, zw) = δ̂(δ̂(q, z),w)):

δ̂(q0, x0u) = δ̂(q0, a1 . . . an0
i−1) = δ̂(δ̂(q0, a1 . . . an), 0

i−1) =

δ̂(δ̂(q0, b1 . . . bn), 0
i−1) = δ̂(q0, b1 . . . bn0

i−1) = δ̂(q0, y1v)

April 12th 2018, Lecture 7 TMV027/DIT321 4/23

A Bad Case for the Subset Construction (Cont.)

Lemma: If |Q| < 2n then L(D) 6= Ln.

Proof: Assume L(D) = Ln.

Let x , y ∈ Σ∗ and u, v ∈ Σn−1 as in previous lemma.

Then, y1v ∈ L(D) but x0u /∈ L(D),

Hence it should be that δ̂(q0, y1v) ∈ F and δ̂(q0, x0u) /∈ F .

However, this contradicts the previous lemma that says that δ̂(q0, x0u) = δ̂(q0, y1v).

April 12th 2018, Lecture 7 TMV027/DIT321 5/23

Product Construction for NFA

Definition: Given 2 NFA N1 = (Q1,Σ, δ1, q1,F1) and
N2 = (Q2,Σ, δ2, q2,F2) over the same alphabet Σ, we define the product
N1 ⊗ N2 = (Q,Σ, δ, q0,F) as follows:

Q = Q1 × Q2;

δ((p1, p2), a) = δ1(p1, a)× δ2(p2, a);

q0 = (q1, q2);

F = F1 × F2.

Lemma: (t1, t2) ∈ δ̂((p1, p2), x) iff t1 ∈ δ̂1(p1, x) and t2 ∈ δ̂2(p2, x).

Proof: By (structural) induction on x .

Proposition: L(N1 ⊗ N2) = L(N1) ∩ L(N2).

April 12th 2018, Lecture 7 TMV027/DIT321 6/23

Variation of Product Construction for NFA?

Recall: Given 2 DFA D1 and D2, then L(D1 ⊕ D2) = L(D1) ∪ L(D2).

Given 2 NFA N1 and N2, do we need to define N1 ⊕ N2?

Not really since union of languages can be modelled by the
nondeterminism!

April 12th 2018, Lecture 7 TMV027/DIT321 7/23

Complement of a NFA?

OBS: Given NFA N = (Q,Σ, δ, q,F) and N ′ = (Q,Σ, δ, q,Q − F),
in general we do not have that L(N ′) = Σ∗ − L(N).

Example: Let Σ = {a} and N and N ′ as follows:

q0 q1
a

L(N) = {a}

q0 q1
a

L(N ′) = {ǫ} 6= Σ∗ − {a}

April 12th 2018, Lecture 7 TMV027/DIT321 8/23

NFA with ǫ-Transitions

We could allow ǫ-transitions: transitions from one state to another without
reading any input symbol.

Example: The following ǫ-NFA searches for the keyword web and ebay:

q0

q1 q2 q3 q4

q5 q6 q7 q8 q9

a ∈ Σ

ǫ

w e b

ǫ

e b a y

April 12th 2018, Lecture 7 TMV027/DIT321 9/23

ǫ-NFA Accepting Words of Length Divisible by 3 or by 5

Example: Let Σ = {1}.

ǫ ǫ

1 1

1

1 1

1
1

1

April 12th 2018, Lecture 7 TMV027/DIT321 10/23

NFA with ǫ-Transitions

Definition: A NFA with ǫ-transitions (ǫ-NFA) is a 5-tuple (Q,Σ, δ, q0,F)
consisting of:

1 A finite set Q of states;

2 A finite set Σ of symbols (alphabet);

3 A “partial” transition function δ : Q × (Σ ∪ {ǫ}) → Pow(Q);

4 A start state q0 ∈ Q;

5 A set F ⊆ Q of final or accepting states.

April 12th 2018, Lecture 7 TMV027/DIT321 11/23

Exercise: ǫ-NFA Accepting Decimal Numbers

Define a NFA accepting number with an optional +/- symbol and an
optional decimal part.

q0 q1

q2

q3q4

ǫ,+,−

0, 1, . . . , 9

.

0, 1, . . . , 9

0, 1, . . . , 9

0, 1, . . . , 9

ǫ

+,- . 0,1,. . . ,9 ǫ

→ q0 {q1} ∅ ∅ {q1}
q1 ∅ ∅ {q2} ∅
q2 ∅ {q3} {q2} {q4}
q3 ∅ ∅ {q4} ∅

∗q4 ∅ ∅ {q4} ∅

The ǫ-transitions take care of the optional symbol +/- and the optional decimal part.

April 12th 2018, Lecture 7 TMV027/DIT321 12/23

ǫ-Closure

Informally, the ǫ-closure of a state q is the set of states we can reach by
doing nothing or by only following paths labelled with ǫ.

Example: For the automaton

q0

q1 q2 q3

q4 q5 q6

ǫ

ǫ

ǫ
ǫ

a ǫ

ab

the ǫ-closure of q0 is {q0, q1, q2, q3, q4}.

April 12th 2018, Lecture 7 TMV027/DIT321 13/23

ǫ-Closure

Definition: Formally, we define the ǫ-closure of a set of states as follows:

If q ∈ S then q ∈ ECLOSE(S);

If q ∈ ECLOSE(S) and p ∈ δ(q, ǫ) then p ∈ ECLOSE(S).

Note: Alternative formulation

q ∈ S

q ∈ ECLOSE(S)

q ∈ ECLOSE(S) p ∈ δ(q, ǫ)

p ∈ ECLOSE(S)

Definition: We say that S is ǫ-closed iff S = ECLOSE(S).

April 12th 2018, Lecture 7 TMV027/DIT321 14/23

Remarks: ǫ-Closure

Intuitively, p ∈ ECLOSE(S) iff there exists q ∈ S and a sequence of
ǫ-transitions such that

q q1 qn pǫ ǫ ǫ ǫ...

The ǫ-closure of a single state q can be computed as ECLOSE({q});

ECLOSE(∅) = ∅;

S is ǫ-closed iff q ∈ S and p ∈ δ(q, ǫ) implies p ∈ S .

Exercise: Implement the ǫ-closure!

April 12th 2018, Lecture 7 TMV027/DIT321 15/23

Extending the Transition Function to Strings

Definition: Given an ǫ-NFA E = (Q,Σ, δ, q0,F) we define

δ̂ : Q ×Σ∗ → Pow(Q)

δ̂(q, ǫ) = ECLOSE({q})
δ̂(q, ax) =

⋃
p∈∆(ECLOSE({q}),a) δ̂(p, x)

where ∆(S , a) = ∪p∈Sδ(p, a)

Remark: By definition, δ̂(q, a) = ECLOSE(∆(ECLOSE({q}), a)).

April 12th 2018, Lecture 7 TMV027/DIT321 16/23

Language Accepted by a ǫ-NFA

Definition: The language accepted by the ǫ-NFA (Q,Σ, δ, q0,F) is the set
L = {x ∈ Σ∗ | δ̂(q0, x) ∩ F 6= ∅}.

Example: Let Σ = {b}. q0 q1 q2

q3 q4 q5

ǫ ǫ

ǫ ǫ
b b b

The automaton accepts the language {b, bb, bbb}.

Note: Yet again, we could write a program that simulates a ǫ-NFA and let
the program tell us whether a certain string is accepted or not.

Exercise: Do it!
April 12th 2018, Lecture 7 TMV027/DIT321 17/23

Example: Eliminating ǫ-Transitions

Let us eliminate the ǫ-transitions in ǫ-NFA that recognises numbers in
slide 12.

We obtain the following DFA:

{q0, q1} {q1}

{q2, q4}{q3}{q4}

q

+,−

0, 1, . . . , 90, 1, . . . , 9

.
0, 1, . . . , 9

0, 1, . . . , 90, 1, . . . , 9

. +,−, .

+,−
+,−, .+,−, .

+,−, ., 0, . . . , 9

April 12th 2018, Lecture 7 TMV027/DIT321 18/23

Eliminating ǫ-Transitions

Definition: Given an ǫ-NFA E = (QE ,Σ, δE , qE ,FE) we define a DFA
D = (QD ,Σ, δD , qD ,FD) as follows:

QD = {ECLOSE(S) | S ∈ Pow(QE)};

δD(S , a) = ECLOSE(∆(S , a)) with ∆(S , a) = ∪p∈Sδ(p, a);

qD = ECLOSE({qE});

FD = {S ∈ QD | S ∩ FE 6= ∅}.

Note: This construction is similar to the subset construction but now we need to ǫ-close

after each step.

Exercise: Implement this transformation!

April 12th 2018, Lecture 7 TMV027/DIT321 19/23

Eliminating ǫ-Transitions

Let E be an ǫ-NFA and D the corresponding DFA after eliminating
ǫ-transitions.

Lemma: ∀x ∈ Σ∗. δ̂E (qE , x) = δ̂D(qD , x).

Proof: By (structural) induction on x .

Proposition: L(E) = L(D).

Proof: x ∈ L(E) iff δ̂E (qE , x) ∩ FE 6= ∅
iff δ̂E (qE , x) ∈ FD by definition of FD

iff δ̂D(qD , x) ∈ FD by previous lemma

iff x ∈ L(D).

April 12th 2018, Lecture 7 TMV027/DIT321 20/23

Finite Automata and Regular Languages

We have shown that DFA, NFA and ǫ-NFA are equivalent in the sense that
we can transform the one into the other.

Hence, a language is regular iff there exists a finite automaton (DFA, NFA
or ǫ-NFA) that accepts the language.

April 12th 2018, Lecture 7 TMV027/DIT321 21/23

Overview of Next Lecture

Sections 3.1, brief on 3.4, 3.2.2:

Regular expressions.

Brief on algebraic laws for regular expressions;

Equivalence between FA and RE: from FA to RE.

Note: One of the methods is not in the book!

April 12th 2018, Lecture 7 TMV027/DIT321 22/23

Overview of next Week

Mon 16 Tue 17 Wed 18 Thu 19 Fri 20

Ex 10-12 EB
ǫ-NFA, RE.

10-12 ES61
Individual
help

Lec 13-15 HB3
RE, FA→RE.

Lec 13-15 HB3
RE→FA, RL.

Ex 15-17 EA
ǫ-NFA, RE.

15-17 EL41
Consultation

Assignment 3: ǫ-NFA, RE.
Deadline: Sunday 22nd April 23:59.

April 12th 2018, Lecture 7 TMV027/DIT321 23/23

