
Finite Automata Theory and Formal Languages

TMV027/DIT321– LP4 2018

Lecture 5

Ana Bove

March 26th 2018

Recap: Inductive sets, (terminating) recursive functions,
structural induction

To define an inductive set S we
state its basic elements
and construct new elements in terms of already existing ones;

To define a recursive function f over an inductively defined set S we
define f on the basic elements
and define f on the recursive elements in terms of the result of f for
the structurally smaller ones;

To prove a property P over an inductively defined set S we
prove that P holds for the basic elements
and assuming that P holds of certain elements in the set, prove that P
holds for all ways of constructing new elements from existing ones;

Using structural induction we prove properties over all (finite)
elements in an inductive set;

Mathematical/simple and course-of-values/strong induction, or
mutual induction are special cases of structural induction.

March 26th 2018, Lecture 5 TMV027/DIT321 1/29

Overview of Today’s Lecture

DFA: deterministic finite automata.

Contributes to the following learning outcome:

Explain and manipulate the different concepts in automata theory and
formal languages;

Understand the power and the limitations of regular languages and
context-free languages;

Design automata, regular expressions and context-free grammars
accepting or generating a certain language;

Describe the language accepted by an automata or generated by a
regular expression or a context-free grammar;

Determine if a certain word belongs to a language;

Differentiate and manipulate formal descriptions of languages,
automata and grammars.

March 26th 2018, Lecture 5 TMV027/DIT321 2/29

Deterministic Finite Automata

We have already seen examples of DFA:

p q r

X

10 kr

tea tea

coffee

5 kr 5 kr

tea
coffee 10 kr

coffee

5 kr , 10 kr

5 kr , 10 kr , tea, coffee

What if we ask for coffee in q?

Formally all non-drawn “actions” go to a dead state X in a DFA!
We will usually not draw them.

March 26th 2018, Lecture 5 TMV027/DIT321 3/29

Deterministic Finite Automata: Formal Definition

Definition: A deterministic finite automaton (DFA) is a 5-tuple
(Q,Σ, δ, q0,F) consisting of:

1 A finite set Q of states;

2 A finite set Σ of symbols (alphabet);

3 A total transition function δ : Q × Σ → Q;

4 A start state q0 ∈ Q;

5 A set F ⊆ Q of final or accepting states.

March 26th 2018, Lecture 5 TMV027/DIT321 4/29

Example: DFA

Let the DFA (Q,Σ, δ, q0,F) be given by:

Q = {q0, q1, q2}
Σ = {0, 1}
F = {q2}
δ : Q × Σ → Q

δ(q0, 0) = q1 δ(q1, 0) = q2 δ(q2, 0) = q1
δ(q0, 1) = q0 δ(q1, 1) = q1 δ(q2, 1) = q2

What does it do?

March 26th 2018, Lecture 5 TMV027/DIT321 5/29

How to Represent a DFA?

Transition Diagram: Helps to understand how it works.

q0 q1 q2
0 0

1 1

0

1

The start state is indicated with →.
The final states are indicated with a double circle.

Transition Table:

δ 0 1
→ q0 q1 q0 The start state is indicated with →.

q1 q2 q1
∗q2 q1 q2 The final states are indicated with a ∗.

March 26th 2018, Lecture 5 TMV027/DIT321 6/29

When Does a DFA Accept a Word?

When reading the word the automaton moves according to δ.

Definition: One starts reading the word from the start state of the
automaton. If when the whole word is read the automaton is on a final
state, then the automaton accepts the word.

Example:

q0 q1 q2 q3 q4

q

t h e n

6= t 6= h 6= e 6= n a ∈ Σ

a ∈ Σ

Only the word “then” is accepted.

We have a (non-accepting) dead state q.
March 26th 2018, Lecture 5 TMV027/DIT321 7/29

Example: DFA

Given Σ = {0, 1}, we want an automaton accepting the words that
contain 010 as a subword, that is, the language L = {x010y | x , y ∈ Σ∗}.

Solution: ({q0, q1, q2, q3}, {0, 1}, δ, q0, {q3}) given by

q0 q1 q2 q3

1

0

0

1 0

1

0, 1

δ 0 1
→ q0 q1 q0

q1 q1 q2
q2 q3 q0

∗q3 q3 q3

March 26th 2018, Lecture 5 TMV027/DIT321 8/29

Extending the Transition Function to Strings

How can we compute what happens when we read a certain word?

Definition: We extend δ to strings as δ̂ : Q × Σ∗ → Q.

We define δ̂(q, x) by recursion on x .

δ̂(q, ǫ) = q

δ̂(q, ax) = δ̂(δ(q, a), x)

Note: δ̂(q, a) = δ(q, a) since the string a = aǫ.

δ̂(q, a) = δ̂(q, aǫ) = δ̂(δ(q, a), ǫ) = δ(q, a)

Example: In the example of slide 8, what are δ̂(q0, 10101) and δ̂(q0, 00110)?

March 26th 2018, Lecture 5 TMV027/DIT321 9/29

Reading the Concatenation of Two Words

Proposition: For any words x and y, and for any state q we have that
δ̂(q, xy) = δ̂(δ̂(q, x), y).

Proof: We prove P(x) = ∀ q.∀ y . δ̂(q, xy) = δ̂(δ̂(q, x), y) by (structural) induction on x .

Base case: ∀ q.∀ y . δ̂(q, ǫy) = δ̂(q, y) = δ̂(δ̂(q, ǫ), y).

Inductive step: Our IH is that ∀ q.∀ y . δ̂(q, xy) = δ̂(δ̂(q, x), y) for a given word x .

We should prove that ∀ q.∀ y . δ̂(q, (ax)y) = δ̂(δ̂(q, ax), y), for a ∈ Σ.

For a given q and y we have that

δ̂(q, (ax)y) = δ̂(q, a(xy)) by def of concat

= δ̂(δ(q, a), xy) by def of δ̂

= δ̂(δ̂(δ(q, a), x), y) by IH with state δ(q, a)

= δ̂(δ̂(q, ax), y) by def of δ̂

March 26th 2018, Lecture 5 TMV027/DIT321 10/29

Another Definition of δ̂

Recall that we have 2 descriptions of words: a(b(c(dǫ))) = (((ǫa)b)c)d .

We can define δ̂′ as: δ̂′(q, ǫ) = q

δ̂′(q, xa) = δ(δ̂′(q, x), a)

Proposition: ∀ x .∀ q. δ̂(q, x) = δ̂′(q, x).

Proof: We prove P(x) = ∀ q. δ̂(q, x) = δ̂′(q, x) by (structural) induction on x .

Observe that xa is a special case of xy where y = a.

Base case is trivial.

Inductive step: The IH is ∀ q. δ̂(q, x) = δ̂′(q, x) for a given x . Then for a ∈ Σ

δ̂(q, xa) = δ̂(δ̂(q, x), a) by previous prop

= δ(δ̂(q, x), a) by def of δ̂

= δ(δ̂′(q, x), a) by IH

= δ̂′(q, xa) by def of δ̂′

March 26th 2018, Lecture 5 TMV027/DIT321 11/29

Language Accepted by a DFA

Definition: The language accepted by the DFA (Q,Σ, δ, q0,F) is the set
L = {x | x ∈ Σ∗, δ̂(q0, x) ∈ F}.

Example: In the example on slide 8, 10101 is accepted but 00110 is not.

Note: We could write a program that simulates a DFA and let the
program tell us whether a certain string is accepted or not!

March 26th 2018, Lecture 5 TMV027/DIT321 12/29

Functional Representation of a DFA Accepting x010y

data Q = Q0 | Q1 | Q2 | Q3

data S = O | I

final :: Q -> Bool

final Q3 = True

final _ = False

delta :: Q -> S -> Q

delta Q0 O = Q1

delta Q0 I = Q0

delta Q1 O = Q1

delta Q1 I = Q2

delta Q2 O = Q3

delta Q2 I = Q0

delta Q3 _ = Q3

March 26th 2018, Lecture 5 TMV027/DIT321 13/29

Functional Representation of a DFA Accepting x010y

delta_hat :: Q -> [S] -> Q

delta_hat q [] = q

delta_hat q (a:xs) = delta_hat (delta q a) xs

accepts :: [S] -> Bool

accepts xs = final (delta_hat Q0 xs)

Alternatively, (just for those knowing Haskell :-)

run :: Q -> [S] -> Q

run = foldl delta

accepts’ :: [S] -> Bool

accepts’ = final . run Q0

March 26th 2018, Lecture 5 TMV027/DIT321 14/29

Accepting by End of String

We could use an automaton to identify properties of a certain string.

What is important then is the state the automaton is in when we finish
reading the input.

The set of final states is actually of no interest here and can be omitted.

Example: The following automaton determines whether a binary number is even or odd.

even odd

0
1

0

1

March 26th 2018, Lecture 5 TMV027/DIT321 15/29

Product of Automata

Given this automaton over {0, 1} accepting strings with an even number of 0’s:

A B

0

0

1

1
State A: even number of 0’s State
B: odd number of 0’s

and this automaton accepting strings with an odd number of 1’s:

C D

1

1

0

0
State C: even number of 1’s State
D: odd number of 1’s

How can we use them to accept the strings with an even nr. of 0’s and an odd nr. of 1’s?

We can run them in parallel!

March 26th 2018, Lecture 5 TMV027/DIT321 16/29

Example: Product of Automata

AC BC

AD BD

0

0

0

0

11 11

State AC: even nr. of 0’s and 1’s

State BC: odd nr. of 0’s and
even nr. of 1’s

State AD: even nr. of 0’s and
odd nr. of 1’s

State BD: odd nr. of 0’s and 1’s

Which is(are) the final state(s)? AD!

March 26th 2018, Lecture 5 TMV027/DIT321 17/29

Product Construction

Definition: Given two DFA D1 = (Q1,Σ, δ1, q1,F1) and
D2 = (Q2,Σ, δ2, q2,F2) with the same alphabet Σ, we can define the
product D = D1 ⊗ D2 = (Q,Σ, δ, q0,F) as follows:

Q = Q1 × Q2;

δ((r1, r2), a) = (δ1(r1, a), δ2(r2, a));

q0 = (q1, q2);

F = F1 × F2.

Proposition:
∀ x ∈ Σ∗.∀ r1 ∈ Q1.∀ r2 ∈ Q2. δ̂((r1, r2), x) = (δ̂1(r1, x), δ̂2(r2, x)).

Proof: By (structural) induction on x .

March 26th 2018, Lecture 5 TMV027/DIT321 18/29

Example: Product of Automata

Consider a system where users have three states: idle, requesting and
using.

Each user k is represented by a simple automaton:

rk

ik

uk

If we have only 2 users, how does the whole system look like?

March 26th 2018, Lecture 5 TMV027/DIT321 19/29

Example: Product of Automata (cont.)

The complete system is represented by the product of these 2 automata
and it has 3 * 3 = 9 states.

i1i2 r1i2 u1i2

i1r2 r1r2 u1r2

i1u2 r1u2 u1u2

How will it look like with n users?
March 26th 2018, Lecture 5 TMV027/DIT321 20/29

Language Accepted by a Product Automaton

Proposition: Given two DFA D1 and D2, then
L(D1 ⊗ D2) = L(D1) ∩ L(D2).

Proof: δ̂(q0, x) = δ̂((q1, q2), x) = (δ̂1(q1, x), δ̂2(q2, x)) ∈ F
iff δ̂1(q1, x) ∈ F1 and δ̂2(q2, x) ∈ F2.
That is, x ∈ L(D1) and x ∈ L(D2) iff x ∈ L(D1) ∩ L(D2).

Note: It can be quite difficult to directly build an automaton accepting
the intersection of two languages.

Exercise: Build a DFA for the language that contains the subword abb twice and an

even number of a’s.

March 26th 2018, Lecture 5 TMV027/DIT321 21/29

Variation of the Product

Definition: We define D1 ⊕ D2 similarly to D1 ⊗ D2 but with a different
notion of accepting state:

a state (r1, r2) is accepting iff r1 ∈ F1 or r2 ∈ F2

Proposition: Given two DFA D1 and D2, then
L(D1 ⊕ D2) = L(D1) ∪ L(D2).

Example: In the automaton in slide 17, which is(are) the final state(s) if we want the
strings with an even number of 0’s or an odd number of 1’s?

AC,AD and BD!

March 26th 2018, Lecture 5 TMV027/DIT321 22/29

Example: Variation of the Product

Let us define an automaton accepting strings with lengths multiple of 2 or
of 3.

p0 p1
a ∈ Σ

a ∈ Σ

q0 q1 q2
a ∈ Σ a ∈ Σ

a ∈ Σ

p0q0

p0q1

p0q2

p1q0

p1q1

p1q2

a ∈ Σ

a ∈ Σ

a ∈ Σ

a ∈ Σ

a ∈ Σ

a ∈ Σ

March 26th 2018, Lecture 5 TMV027/DIT321 23/29

Complement

Definition: Given the automaton D = (Q,Σ, δ, q0,F) we define the
complement D of D as the automaton D = (Q,Σ, δ, q0,Q − F).

Proposition: Given a DFA D we have that L(D) = Σ∗ − L(D) = L(D).

Example: We transform an automaton accepting strings containing 10 into an
automaton accepting strings NOT containing 10.

q0 q1 q2
1

0 1

0

0, 1

=⇒
q0 q1 q2

1

0 1

0

0, 1

March 26th 2018, Lecture 5 TMV027/DIT321 24/29

Accessible Part of a DFA

Consider the DFA D = ({q0, . . . , q3}, {0, 1}, δ, q0 , {q1}) given by

q0 q1 q2 q3

1

0

0

1

1

0

0

1

Intuitively, this is equivalent to the DFA

q0 q1

1

0

0

1

which is the accessible part of the D.

q2 and q3 are not accessible from the start state and can be removed.
March 26th 2018, Lecture 5 TMV027/DIT321 25/29

Accessible States

Definition: The set Acc = {δ̂(q0, x) | x ∈ Σ∗} is the set of accessible
states (from the state q0).

Proposition: If D = (Q,Σ, δ, q0,F) is a DFA, then
D ′ = (Q ∩Acc,Σ, δ|Q∩Acc, q0,F ∩Acc) is a DFA such that L(D) = L(D ′).

Proof: Notice that D ′ is well defined and that L(D ′) ⊆ L(D).

If x ∈ L(D) then δ̂(q0, x) ∈ F . By definition δ̂(q0, x) ∈ Acc.

Hence δ̂(q0, x) ∈ F ∩ Acc and then x ∈ L(D ′).

March 26th 2018, Lecture 5 TMV027/DIT321 26/29

Regular Languages

Recall: Given an alphabet Σ, a language L is a subset of Σ∗, that is, L ⊆ Σ∗.

Definition: A language L ⊆ Σ∗ is regular iff there exists a DFA D on the
alphabet Σ such that L = L(D).

Recall: Recall that a DFA can only remember a finite amount of things!

Proposition: If L1 and L2 are regular languages then so are L1 ∩ L2,
L1 ∪ L2 and Σ∗ − L1.

Proof: . . .

March 26th 2018, Lecture 5 TMV027/DIT321 27/29

Overview of Next Lecture

Sections 2.3–2.3.5, brief on 2.4:

NFA: Non-deterministic finite automata;

Equivalence between DFA and NFA.

March 26th 2018, Lecture 5 TMV027/DIT321 28/29

Overview of next Week

Mon 9 Tue 10 Wed 11 Thu 12 Fri 12

Ex 10-12 EA
DFA, NFA.

10-12 EL41
Individual
help

Lec 13-15 HB3
NFA,
FA↔NFA.

Lec 13-15 HB3
NFA, ǫ-NFA.

Ex 15-17 EA
DFA, NFA.

15-17 EL41
Consultation

Assignment 2: DFA, NFA.
Deadline: Sunday 15th April 23:59.

March 26th 2018, Lecture 5 TMV027/DIT321 29/29

