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Recap: Context-Free Grammars

Equivalence between recursive inference, (leftmost/rightmost)
derivations and parse trees;

Ambiguous grammars;

Inherent ambiguity;

Proofs about grammars and languages.
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Overview of Today’s Lecture

Simplification of CFL;

Chomsky normal form for CFL.

Contributes to the following learning outcome:

Explain and manipulate the diff. concepts in automata theory and formal lang;

Simplify automata and context-free grammars;

Differentiate and manipulate formal descriptions of lang, automata and grammars.

And guest lecture by Martin Fabian on Application of Formal Verification
to the Lane Change Module of an Autonomous Vehicle.
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Generating, Reachable, Useful and Useless Symbols

Let G = (V ,T ,R,S) be a CFG.
Let X ∈ V ∪ T and let α, β ∈ (V ∪ T )∗.

Definition: X is reachable if S ⇒∗ αXβ.
(This is similar to accessible states in FA.)

Definition: X is generating if X ⇒∗ w for some w ∈ T ∗.

Definition: The symbol X is useful if S ⇒∗ αXβ ⇒∗ w for some w ∈ T ∗.
Note: A symbol that is useful should be generating and reachable.

Definition: X is useless iff it is not useful.

We shall simplify the grammars by eliminating useless symbols.
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Computing the Generating Symbols

Let G = (V ,T ,R,S) be a CFG.

The following recursive procedure computes the generating symbols of G :

Base Case: All elements of T are generating;

Recursive Step: If a production A → α is such that all symbols of α are
known to be generating, then A is also generating.
Observe that α could be ǫ.

The recursive step must be applied until no new symbols are found generating.

Theorem: The procedure above finds all and only the generating symbols
of a grammar.

Proof: See Theorem 7.4 in the book.
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Example: Generating Symbols

Consider the grammar over {a} given by the rules:

S → aS | W | U
W → aW
U → a
V → aa

a is generating.

U and V are generating since U → a and V → aa.

S is generating since S → U.

No other symbol is found generating so W is not generating.

After eliminating the non-generating symbols and their productions we get

S → aS | U U → a V → aa
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Computing the Reachable Symbols

Let G = (V ,T ,R,S) be a CFG.

The following recursive procedure computes the reachable symbols of G :

Base Case: The start variable S is reachable;

Recursive Step: If A is reachable and we have a production A → α then
all symbols in α are reachable.

The recursive step must be applied until no new symbols are found reachable.

Theorem: The procedure above finds all and only the reachable symbols
of a grammar.

Proof: See Theorem 7.6 in the book.
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Example: Reachable Symbols

Consider the grammar given by the rules:

S → aB | BC C → b
A → aA | c | aDb D → B
B → DB | C

S is reachable.

Hence a, B and C are reachable.

Then b and D are reachable.

No other symbol are found reachable so A and c are not reachable.

After eliminating the non-reachable symbols and their productions we get

S → aB | BC C → b
B → DB | C D → B

May 7th 2018, Lecture 13 TMV027/DIT321 7/21



Eliminating Useless Symbols

It is important in which order we check generating and reachable symbols!

Example: Consider the following grammar

S → AB | a A → b

If we first check for generating symbols and then for reachability we get

S → a

If we first check for reachability and then for generating we get

S → a A → b
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Eliminating Useless Symbols

Theorem: Let G = (V ,T ,R,S) be a CFG and let L(G ) 6= ∅.
Let G ′ = (V ′,T ′,R′,S) be constructed as follows:

1 First, eliminate all non-generating symbols and all productions
involving one or more of those symbols;

2 Then, eliminate all non-reachable symbols and all productions
involving one or more of those symbols.

Then G ′ has no useless symbols and L(G ) = L(G ′).

Proof: See Theorem 7.2 in the book.
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Example: Eliminating Useless Symbols

Consider the grammar given by the rules:

S → gAe | aYB | CY A → bBY | ooC
B → dd | D C → jVB | gl
D → n U → kW
V → baXXX | oV W → c
X → fV Y → Yhm

After eliminating non-generating symbols:

S → gAe A → ooC
B → dd | D C → gl
D → n U → kW

W → c

After eliminating non-reachable symbols:

S → gAe A → ooC C → gl

What is the language generated by the grammar?
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Nullable Variables

Definition: A variable A is nullable if A ⇒∗ ǫ.
Note: Observe that only variables are nullable!

Let G = (V ,T ,R,S) be a CFG.

The following recursive procedure computes the nullable variables of G :

Base Case: If A → ǫ is a production then A is nullable;

Recursive Step: If B → X1X2 . . .Xk is a production and all the Xi are
nullable then B is also nullable.

The recursive step must be applied until no new symbols are found nullable.

Theorem: The procedure above finds all and only the nullable variables of
a grammar.

Proof: See Theorem 7.7 in the book.
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Eliminating ǫ-Productions

Definition: An ǫ-production is a production of the form A → ǫ.

Let G = (V ,T ,R,S) be a CFG.

The following procedure eliminates the ǫ-production of G :

1 Determine all nullable variables of G ;
2 Build P with all the productions of R plus a rule A → αβ whenever

we have A → αBβ and B is nullable.
Note: If A → X1X2 . . .Xk and all Xi are nullable, we do not include the case where

all the Xi are absent;

3 Construct G ′ = (V ,T ,R′,S) where R′ contains all the productions
in P except for the ǫ-productions.

Theorem: The grammar G ′ constructed from the grammar G as above is
such that L(G ′) = L(G )− {ǫ}.

Proof: See Theorem 7.9 in the book.
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Example: Eliminating ǫ-Productions

Example: Consider the grammar given by the rules:

S → aSb | SS | ǫ

By eliminating ǫ-productions we obtain

S → ab | aSb | S | SS

Example: Consider the grammar given by the rules:

S → AB A → aAA | ǫ B → bBB | ǫ

By eliminating ǫ-productions we obtain

S → A | B | AB A → a | aA | aAA B → b | bB | bBB
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Eliminating Unit Productions

Definition: A unit production is a production of the form A → B .
(This is similar to ǫ-transitions in a ǫ-NFA.)

Let G = (V ,T ,R,S) be a CFG.

The following procedure eliminates the unit production of G :

1 Build P with all the productions of R plus a rule A → α whenever we
have A → B and B → α;
Observe that this step might introduce new unit productions that must be

expanded!

2 Construct G ′ = (V ,T ,R′,S) where R′ contains all the productions
in P except for the unit production.

Theorem: The grammar G ′ constructed from the grammar G as above is
such that L(G ′) = L(G ).

Proof: See Theorem 7.13 in the book.
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Example: Eliminating Unit Productions

Consider the grammar given by the rules:

S → CBh | D A → aaC
B → Sf | ggg C → cA | d | C
D → E | SABC E → be

By eliminating unit productions we obtain:

S → CBh | be | SABC A → aaC
B → Sf | ggg C → cA | d
D → be | SABC E → be
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Simplification of a Grammar

Theorem: Let G = (V ,T ,R,S) be a CFG whose language contains at
least one string other than ǫ. If we construct G ′ by

1 First, eliminating ǫ-productions;

2 Then, eliminating unit productions;

3 Finally, eliminating useless symbols;

using the procedures shown before then L(G ′) = L(G )− {ǫ}.

In addition, G ′ contains no ǫ-productions, no unit productions and no
useless symbols.

Proof: See Theorem 7.14 in the book.

Note: It is important to apply the steps in this order!
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Chomsky Normal Form

Definition: A CFG is in Chomsky Normal Form (CNF) if G has no useless
symbols and all the productions are of the form A → BC or A → a.

Note: Observe that a CFG that is in CNF has no unit or ǫ-productions!

Theorem: For any CFG G whose language contains at least one string
other than ǫ, there is a CFG G ′ that is in Chomsky Normal Form and such
that L(G ′) = L(G )− {ǫ}.

Proof: See Theorem 7.16 in the book.
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Constructing a Chomsky Normal Form

Let us assume G has no ǫ- or unit productions and no useless symbols.

Then every production is of the form A → a or A → X1X2 . . .Xk for k > 1.

If Xi is a terminal introduce a new variable Ai and a new rule Ai → Xi

(if no such rule exists for Xi with a variable that has no other rules).

Use Ai in place of Xi in any rule whose body has length > 1.

Now, all rules are of the form B → b or B → C1C2 . . .Ck with all Cj

variables.

Introduce k − 2 new variables and break each rule B → C1C2 . . .Ck as

B → C1D1 D1 → C2D2 · · · Dk−2 → Ck−1Ck
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Example: Chomsky Normal Form

Example: Consider the grammar given by the rules:

S → aSb | SS | ab

We first obtain
S → ASB | SS | AB A → a B → b

Then we build a grammar in Chomsky Normal Form

S → AC | SS | AB A → a
C → SB B → b

Example: Observe however that
S → aa | a

is NOT equivalent to
S → SS | a

Instead we need to build
S → AA | a A → a
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Overview of Next Lecture

Sections 7.2–7.4, and notes on Pumping lemma:

Regular grammars;

Chomsky hierarchy;

Pumping lemma for CFL;

Closure properties of CFL;

Decision properties of CFL.
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Overview of next Week

Mon 14 Tue 15 Wed 16 Thu 17 Fri 18

10-12 EA
Exercise

10-12 ES61
Individual help

Lec 13-15 HB3
CFL.

Lec 13-15 HB3
PDA. TM.

15-17 EA
Exercise

15-17 EL41
Consultation

Assignment 6: CFL.
Deadline: Sunday May 20th 23:59.
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