
Finite Automata Theory and Formal Languages

TMV027/DIT321– LP4 2018

Lecture 13

Ana Bove

May 7th 2018

Recap: Context-Free Grammars

Equivalence between recursive inference, (leftmost/rightmost)
derivations and parse trees;

Ambiguous grammars;

Inherent ambiguity;

Proofs about grammars and languages.

May 7th 2018, Lecture 13 TMV027/DIT321 1/21



Overview of Today’s Lecture

Simplification of CFL;

Chomsky normal form for CFL.

Contributes to the following learning outcome:

Explain and manipulate the diff. concepts in automata theory and formal lang;

Simplify automata and context-free grammars;

Differentiate and manipulate formal descriptions of lang, automata and grammars.

And guest lecture by Martin Fabian on Application of Formal Verification
to the Lane Change Module of an Autonomous Vehicle.

May 7th 2018, Lecture 13 TMV027/DIT321 2/21

Generating, Reachable, Useful and Useless Symbols

Let G = (V ,T ,R,S) be a CFG.
Let X ∈ V ∪ T and let α, β ∈ (V ∪ T )∗.

Definition: X is reachable if S ⇒∗ αXβ.
(This is similar to accessible states in FA.)

Definition: X is generating if X ⇒∗ w for some w ∈ T ∗.

Definition: The symbol X is useful if S ⇒∗ αXβ ⇒∗ w for some w ∈ T ∗.
Note: A symbol that is useful should be generating and reachable.

Definition: X is useless iff it is not useful.

We shall simplify the grammars by eliminating useless symbols.
May 7th 2018, Lecture 13 TMV027/DIT321 3/21



Computing the Generating Symbols

Let G = (V ,T ,R,S) be a CFG.

The following recursive procedure computes the generating symbols of G :

Base Case: All elements of T are generating;

Recursive Step: If a production A → α is such that all symbols of α are
known to be generating, then A is also generating.
Observe that α could be ǫ.

The recursive step must be applied until no new symbols are found generating.

Theorem: The procedure above finds all and only the generating symbols
of a grammar.

Proof: See Theorem 7.4 in the book.

May 7th 2018, Lecture 13 TMV027/DIT321 4/21

Example: Generating Symbols

Consider the grammar over {a} given by the rules:

S → aS | W | U
W → aW
U → a
V → aa

a is generating.

U and V are generating since U → a and V → aa.

S is generating since S → U.

No other symbol is found generating so W is not generating.

After eliminating the non-generating symbols and their productions we get

S → aS | U U → a V → aa

May 7th 2018, Lecture 13 TMV027/DIT321 5/21



Computing the Reachable Symbols

Let G = (V ,T ,R,S) be a CFG.

The following recursive procedure computes the reachable symbols of G :

Base Case: The start variable S is reachable;

Recursive Step: If A is reachable and we have a production A → α then
all symbols in α are reachable.

The recursive step must be applied until no new symbols are found reachable.

Theorem: The procedure above finds all and only the reachable symbols
of a grammar.

Proof: See Theorem 7.6 in the book.

May 7th 2018, Lecture 13 TMV027/DIT321 6/21

Example: Reachable Symbols

Consider the grammar given by the rules:

S → aB | BC C → b
A → aA | c | aDb D → B
B → DB | C

S is reachable.

Hence a, B and C are reachable.

Then b and D are reachable.

No other symbol are found reachable so A and c are not reachable.

After eliminating the non-reachable symbols and their productions we get

S → aB | BC C → b
B → DB | C D → B

May 7th 2018, Lecture 13 TMV027/DIT321 7/21



Eliminating Useless Symbols

It is important in which order we check generating and reachable symbols!

Example: Consider the following grammar

S → AB | a A → b

If we first check for generating symbols and then for reachability we get

S → a

If we first check for reachability and then for generating we get

S → a A → b

May 7th 2018, Lecture 13 TMV027/DIT321 8/21

Eliminating Useless Symbols

Theorem: Let G = (V ,T ,R,S) be a CFG and let L(G ) 6= ∅.
Let G ′ = (V ′,T ′,R′,S) be constructed as follows:

1 First, eliminate all non-generating symbols and all productions
involving one or more of those symbols;

2 Then, eliminate all non-reachable symbols and all productions
involving one or more of those symbols.

Then G ′ has no useless symbols and L(G ) = L(G ′).

Proof: See Theorem 7.2 in the book.

May 7th 2018, Lecture 13 TMV027/DIT321 9/21



Example: Eliminating Useless Symbols

Consider the grammar given by the rules:

S → gAe | aYB | CY A → bBY | ooC
B → dd | D C → jVB | gl
D → n U → kW
V → baXXX | oV W → c
X → fV Y → Yhm

After eliminating non-generating symbols:

S → gAe A → ooC
B → dd | D C → gl
D → n U → kW

W → c

After eliminating non-reachable symbols:

S → gAe A → ooC C → gl

What is the language generated by the grammar?

May 7th 2018, Lecture 13 TMV027/DIT321 10/21

Nullable Variables

Definition: A variable A is nullable if A ⇒∗ ǫ.
Note: Observe that only variables are nullable!

Let G = (V ,T ,R,S) be a CFG.

The following recursive procedure computes the nullable variables of G :

Base Case: If A → ǫ is a production then A is nullable;

Recursive Step: If B → X1X2 . . .Xk is a production and all the Xi are
nullable then B is also nullable.

The recursive step must be applied until no new symbols are found nullable.

Theorem: The procedure above finds all and only the nullable variables of
a grammar.

Proof: See Theorem 7.7 in the book.
May 7th 2018, Lecture 13 TMV027/DIT321 11/21



Eliminating ǫ-Productions

Definition: An ǫ-production is a production of the form A → ǫ.

Let G = (V ,T ,R,S) be a CFG.

The following procedure eliminates the ǫ-production of G :

1 Determine all nullable variables of G ;
2 Build P with all the productions of R plus a rule A → αβ whenever

we have A → αBβ and B is nullable.
Note: If A → X1X2 . . .Xk and all Xi are nullable, we do not include the case where

all the Xi are absent;

3 Construct G ′ = (V ,T ,R′,S) where R′ contains all the productions
in P except for the ǫ-productions.

Theorem: The grammar G ′ constructed from the grammar G as above is
such that L(G ′) = L(G )− {ǫ}.

Proof: See Theorem 7.9 in the book.
May 7th 2018, Lecture 13 TMV027/DIT321 12/21

Example: Eliminating ǫ-Productions

Example: Consider the grammar given by the rules:

S → aSb | SS | ǫ

By eliminating ǫ-productions we obtain

S → ab | aSb | S | SS

Example: Consider the grammar given by the rules:

S → AB A → aAA | ǫ B → bBB | ǫ

By eliminating ǫ-productions we obtain

S → A | B | AB A → a | aA | aAA B → b | bB | bBB

May 7th 2018, Lecture 13 TMV027/DIT321 13/21

Ana Bove




Eliminating Unit Productions

Definition: A unit production is a production of the form A → B .
(This is similar to ǫ-transitions in a ǫ-NFA.)

Let G = (V ,T ,R,S) be a CFG.

The following procedure eliminates the unit production of G :

1 Build P with all the productions of R plus a rule A → α whenever we
have A → B and B → α;
Observe that this step might introduce new unit productions that must be

expanded!

2 Construct G ′ = (V ,T ,R′,S) where R′ contains all the productions
in P except for the unit production.

Theorem: The grammar G ′ constructed from the grammar G as above is
such that L(G ′) = L(G ).

Proof: See Theorem 7.13 in the book.
May 7th 2018, Lecture 13 TMV027/DIT321 14/21

Example: Eliminating Unit Productions

Consider the grammar given by the rules:

S → CBh | D A → aaC
B → Sf | ggg C → cA | d | C
D → E | SABC E → be

By eliminating unit productions we obtain:

S → CBh | be | SABC A → aaC
B → Sf | ggg C → cA | d
D → be | SABC E → be

May 7th 2018, Lecture 13 TMV027/DIT321 15/21



Simplification of a Grammar

Theorem: Let G = (V ,T ,R,S) be a CFG whose language contains at
least one string other than ǫ. If we construct G ′ by

1 First, eliminating ǫ-productions;

2 Then, eliminating unit productions;

3 Finally, eliminating useless symbols;

using the procedures shown before then L(G ′) = L(G )− {ǫ}.

In addition, G ′ contains no ǫ-productions, no unit productions and no
useless symbols.

Proof: See Theorem 7.14 in the book.

Note: It is important to apply the steps in this order!

May 7th 2018, Lecture 13 TMV027/DIT321 16/21

Chomsky Normal Form

Definition: A CFG is in Chomsky Normal Form (CNF) if G has no useless
symbols and all the productions are of the form A → BC or A → a.

Note: Observe that a CFG that is in CNF has no unit or ǫ-productions!

Theorem: For any CFG G whose language contains at least one string
other than ǫ, there is a CFG G ′ that is in Chomsky Normal Form and such
that L(G ′) = L(G )− {ǫ}.

Proof: See Theorem 7.16 in the book.

May 7th 2018, Lecture 13 TMV027/DIT321 17/21



Constructing a Chomsky Normal Form

Let us assume G has no ǫ- or unit productions and no useless symbols.

Then every production is of the form A → a or A → X1X2 . . .Xk for k > 1.

If Xi is a terminal introduce a new variable Ai and a new rule Ai → Xi

(if no such rule exists for Xi with a variable that has no other rules).

Use Ai in place of Xi in any rule whose body has length > 1.

Now, all rules are of the form B → b or B → C1C2 . . .Ck with all Cj

variables.

Introduce k − 2 new variables and break each rule B → C1C2 . . .Ck as

B → C1D1 D1 → C2D2 · · · Dk−2 → Ck−1Ck

May 7th 2018, Lecture 13 TMV027/DIT321 18/21

Example: Chomsky Normal Form

Example: Consider the grammar given by the rules:

S → aSb | SS | ab

We first obtain
S → ASB | SS | AB A → a B → b

Then we build a grammar in Chomsky Normal Form

S → AC | SS | AB A → a
C → SB B → b

Example: Observe however that
S → aa | a

is NOT equivalent to
S → SS | a

Instead we need to build
S → AA | a A → a

May 7th 2018, Lecture 13 TMV027/DIT321 19/21



Overview of Next Lecture

Sections 7.2–7.4, and notes on Pumping lemma:

Regular grammars;

Chomsky hierarchy;

Pumping lemma for CFL;

Closure properties of CFL;

Decision properties of CFL.

May 7th 2018, Lecture 13 TMV027/DIT321 20/21

Overview of next Week

Mon 14 Tue 15 Wed 16 Thu 17 Fri 18

10-12 EA
Exercise

10-12 ES61
Individual help

Lec 13-15 HB3
CFL.

Lec 13-15 HB3
PDA. TM.

15-17 EA
Exercise

15-17 EL41
Consultation

Assignment 6: CFL.
Deadline: Sunday May 20th 23:59.

May 7th 2018, Lecture 13 TMV027/DIT321 21/21


