
Testing, Debugging, and Verification re-exam

DIT082/TDA567

Day: 5 April 2016 Time: 1400 − 1800

Responsible: Atze van der Ploeg

Results: Will be published mid May or earlier

Extra aid: Only dictionaries may be used. Other aids are not allowed!

Grade intervals: U: 0 – 21p, 3: 22 – 32p, 4: 32 – 40p, 5: 40 –46p,
G: 22 – 39p, VG: 40 – 46p, Max. 46p.

Please observe the following:
• This exam has 8 numbered pages.

Please check immediately that your copy is complete
• Answers must be given in English
• Please use page numbering on your pages
• Please write clearly
• Fewer points are given for unnecessarily complicated solutions
• Indicate clearly when you make assumptions that are not given in the assignment
• Answers to the exam will be published on the course website tomorrow.

Good luck!

1

Exam/Tenta DIT082/TDA567 11 Jan 2016 3

1 Testing

Assignment 1 Testing debugging and verification (3p)

Professor Brainy McSmartypants thinks that all software should be fully verified. “Why
would anyone not verify their software, certainty is of the utmost import!”, he argues.

→ Give a reason why a company would not verify its software but rely on
testing instead.

Assignment 2 Logic coverage (3p)

Consider the following piece of java code:

if (x < 1 || (y > z && z == 3))

return x;

else

return z;

→ Construct a minimal set of test-cases for the code snippet above, which
satisfy Modified Condition decision coverage.

Exam/Tenta DIT082/TDA567 11 Jan 2016 4

Assignment 3 Branch coverage (5p)

Consider the following Java method:

/* merges two sorted lists

requires: input left and right are non-null arrays which are sorted

in non-decreasing order

ensures: output is the number of elements that are present in

both arrays

*/

public static int inBoth(int[] left, int[] right){

int il = 0, ir = 0, res = 0;

while(il < left.length && ir < right.length){

if(left[il] == right[ir]) {

il += 1; ir += 1; res += 1;

} else if(left[il] < right[ir]) {

il += 1;

} else {

ir += 1;

}

{

return res;

}

(a) Explain why a test set for this program that has statement coverage must
also have branch coverage.

(2p)

(b) Write down one or more test cases, such that this/these test case(s)
together satisfy branch coverage. State clearly which parts of the test(s)
cover which part of the code.

(3p)

Assignment 4 Property based testing (3p)

A fast way to see if a sorted list contains a certain element is binary search, but its
implementation is a bit tricky.

→ How would you use randomized testing of the pointwise equivalence
of functions to get some certainty about an implementation of binary
search?

Exam/Tenta DIT082/TDA567 11 Jan 2016 5

Assignment 5 Minimization using DDMin (7p)

An method for computing the checksum of a string fails if there are two identical
characters in a string, for example in "aa" or "ada".

(a) List all 1-minimal failing subsequences in the following string:
[f,a,e,c,c,a,e,g].

(2p)

(b) Simulate a run of the ddMin algorithm and compute a 1-minimal fail-
ing input from the following initial failing input: [f,a,e,c,c,a,e,g].
Clearly state what happens at each step of the algorithm and what the
final result is.

(5p)

Assignment 6 Stateful property based-testing (6p)

Sven has has implemented a stateful set with the following interface:

class SvenSet {

SvenSet() ...

void add(int x) ...

void remove(int x) ...

boolean contains(int x) ...

}

(a) Write down the specification of the methods add and remove. The speci-
fications should be such that the behavior can only that what one would
expect from a mutable set.

(2p)

Exam/Tenta DIT082/TDA567 11 Jan 2016 6

Sven has implemented the mutable set as follows:

class SvenSet {

ListInteger elems;

SvenSet() {

elems = new LinkedListInteger();

}

void add(int x) {

elems.add(x);

}

void remove(int x) {

int i = elems.indexOf(x);

if(i >= 0) {

elems.remove(i);

}

}

boolean contains(int x) {

return elems.indexOf(x) >= 0;

}

}

The documentation of the used methods from ListInteger are as follows:

public void add(int element)

//Appends the specified element to the end of this list.

public void remove(int index)

// Removes the element at the specified position in this list.

public int indexOf(int element)

// Returns the index of the first occurrence of the specified element

// in this list, or -1 if this list does not contain the element.

However, SvenSet does not work as one would expect from a set.

(b) Describe what is wrong with the implementation. (1p)

(c) Give an example of an algebraic property of mutable sets that does not
hold for the implementation of SvenSet, but should for mutable sets. In
other words give an example of an algebraic property with which random-
ized stateful testing could have found the incorrect behavior of SvenSet.

(3p)

Exam/Tenta DIT082/TDA567 11 Jan 2016 7

Assignment 7 Formal Specification (8p)

We want to specify the following method in Dafny:

method binarySearch(a : array<int>, element : int)

returns (index : int)

requires sorted(a)

ensures ?

Which, informally takes a sorted array and searches for the given number in the array.
It returns −1 if the given number is not present in the array, and otherwise returns an
index such that the number is at that place in the array.

(a) Make the above informal description formal by filling in the ensures

clause above. You can assume that sorted is defined correctly. Use
Dafny syntax.

(4p)

The sorted predicate is partially defined as follows:

predicate sorted(a : array<int>)

reads a

{ ? }

Sorted here means “non-decreasing”: elements at bigger indices are never smaller than
elements at smaller indices.

(b) Write down the definition of the body of the predicate sorted. Use
Dafny syntax.

(4p)

Exam/Tenta DIT082/TDA567 11 Jan 2016 8

Assignment 8 (Formal Verification) (11p)

The Fibonacci numbers, 1, 1, 2, 3, 5, 8, 13, .. are defined as follows in Dafny:

function fib(n : int) : int

{ if n <= 1 then 1 else fib(n-1) + fib(n-2) }

Examples:

fib(0) == 1, fib(1) == 1, fib(3) == 3

The following method computes the nth Fibonacci number, for n ≥ 1:

method fibfast(n: int) returns (r : int)

requires n >= 1

ensures r == fib(n)

{

var i := 1;

var p := 1;

r := 1;

while(i < n)

invariant ?

{

var tmp := r;

r := r + p;

p := tmp;

i := i + 1;

}

}

The variable p always contains the previous fibonacci number, and r the current.
(a) Give a suitable loop invariant (i.e. a loop invariant such that the post-

condition is provable).
(2p)

(b) Prove partial correctness (no termination proof) for fibfast using the
loop invariant from the previous sub-question. You may compute fib in
your answer (for example replace fib(1) by 1). You may also assume
that p == fib(i-1) && r == fib(i) ==> p + r == fib(i + 1)

(5p)

(c) What is a suitable variant (decreases clause) for the while loop in the
above program?

(1p)

(d) Prove termination of the while-loop for the above program using the
variant from the previous sub-question.

(3p)

(total 46p)

