Testing, Debugging, and Verification

Formal Verification, Part |l

Srinivas Pinisetty?

10 December 2018

1 . . CHALMERS/GU
Lecture slides based on material from Wolfgang Aherndt,..

Recap

method MyMethod(. . .)
requires (
ensures R
{

S: program statements

}

Hoare Triple: {Q} S {R}

If execution of program S starts in a state satisfying pre-condition
@, the is is guaranteed to terminate in a state satisfying the
post-condition R.

CHALMERS/GU

Recap

method MyMethod(. . .)
requires (
ensures R
{

S: program statements

}

Proving {Q} S {R}:
» Extract Weakest Precondition wp(S, R):

» |Logical formula specifying set of initial states s.t.
> if program S terminates,
» end up in state satisfying postcondition R.

» Extract wp(S, R) by reasoning backwards.

» Show that precondition @ implies wp:
Q — wp(S, R)

v
—r i £RsS/GU

A small imperative language

Assignment: x := e

Sequential: S1; S2

Assertions: assert B
If-statements: if B then S1 else S2
While-loops: while B S <= to be discussed

Semantics
The weakest precondition calculus provide a semantic for each
language construct.

CHALMERS/GU

Recap: The Weakest Precondition Calculus

Assignment: wp(x :=e,R) = R[x — €]

CHALMERS/GU

Recap: The Weakest Precondition Calculus

Assignment: wp(x :=e,R) = R[x — €]
Sequential: wp(S1; 52, R) = wp(S1, wp(52, R))

CHALMERS/GU

Recap: The Weakest Precondition Calculus

Assignment: wp(x :=e,R) = R[x — €]
Sequential: wp(S1; 52, R) = wp(S1, wp(52, R))
Assertions: wp(assert B, R) = BA R

CHALMERS/GU

Recap: The Weakest Precondition Calculus

wp(x :=e,R) = R[x — €]

wp(S1; S2, R) = wp(S1, wp(S52, R))
Assertions: wp(assert B, R) = BA R

Conditional: wp(if B then S1 else S2, R) =

(B — wp(S1,R)) A (=B — wp(S2,R))

Assignment:
Sequential:

CHALMERS/GU

Recap: The Weakest Precondition Calculus

Assignment: wp(x := e, R) = R[x — €]
Sequential: wp(S1; 52, R) = wp(S1, wp(52, R))
Assertions: wp(assert B, R) = BA R

Conditional: wp(if B then S1 else S2, R) =
(B — wp(S1,R)) A (=B — wp(S2,R))

Conditional 2: (empty else branch)

wp(if B then S1, R) = (B — wp(S1,R))A(-B — R)

CHALMERS/GU

Recap: The Weakest Precondition Calculus

Assignment: wp(x := e, R) = R[x — €]
Sequential: wp(S1; 52, R) = wp(S1, wp(52, R))
Assertions: wp(assert B, R) = BA R
Conditional: wp(if B then S1 else S2, R) =
(B — wp(S1,R)) A (=B — wp(S2,R))
Conditional 2: (empty else branch)
wp(if B then S1, R) = (B — wp(S1,R))A(-B — R)

v

Conditional, empty else branch

If else is empty, need to show that R follows just from negated
guard.

CHALMERS/GU

Recall: Reasoning Backwards

> Note: Verification Proofs by Backwards Reasoning.
» Start from post-condition.

> "Execute” program backwards by computing weakest
pre-conditions.

» The wp of a statement become the “post-condition” for the
previous statement.

CHALMERS/GU

Recall: Reasoning Backwards

> Note: Verification Proofs by Backwards Reasoning.
» Start from post-condition.

> "Execute” program backwards by computing weakest
pre-conditions.

» The wp of a statement become the “post-condition” for the
previous statement.

Example: Weakest Precondition of a sequential:

{?}S1;S2{Post}

{?3S1 {P} S2 {Post}
>

P = wp(S2, Post)

{P'} 81 {P} S2 {Post}
| S

P'=wp(81, P) P = wp(S2, Post) CHALMERS/GU
=wp(S1;S2, Post)

Mini Quiz: Derive the weakest precondition

The Rules
wp(x :=e,R) = R[x — €]
wp(S1; S2, R) = wp(S1, wp(52, R))
wp(assert B, R) = BA R
wp(if B then S1 else S2, R) =
(B— wp(S1,R)) A (=B — wp(S2,R))

Derive the weakest precondition, stating which rules you use in

each step.

S | R
a) |1 := i+2; j := j-2 i+ 3 ==
b) | i := i+1; assert i > 0 i<=0

c) | if isEven(x) then y:=x/2 else y:=(x-1)/2 | isEven(y)

CHALMERS/GU

Mini Quiz: Derive the weakest precondition

Solution:

a)i+ j ==

(apply seq. rule followed by assignment rule, simplify)

b) i+1 > 0 && i+l <= 0

(apply seq rule, assert rule, assignment)

Simplifies to 1 => 0 && i <= -1 which is false! No initial state
can satisfy this postcondition.

c)

isEven(x) ==> isEven(x/2) && !isEven(x) ==
isEven((x-1)/2)

(apply cond. rule, followed by assignment.)

CHALMERS/GU

Let's Prove ManyReturns Correct!

Recall

To prove correct a program S with precondition @ and
postcondition R we need to show that @ — wp(S, R).

method ManyReturns(x:int, y:int) returns (more:int, less:
int)

requires 0 < y;

ensures less < x < more;

{
more := X+y;
less := x-y;
}
Show that

0 <y — wp(more:=x+y;less :=x —y, less < x < more)

CHALMERS/GU

Let's Prove ManyReturns Correct!

Show that Pre — wp(S, Post).
First compute wp:

wp(more := x + y; less := x — y, less < x < more)

CHALMERS/GU

Let's Prove ManyReturns Correct!

Show that Pre — wp(S, Post).
First compute wp:

wp(more := x + y; less := x — y, less < x < more)
Seq. rule

wp(more := x + y, wp(less := x — y, less < x < more))

CHALMERS/GU

Let's Prove ManyReturns Correct!

Show that Pre — wp(S, Post).
First compute wp:

wp(more := x + y; less := x — y, less < x < more)
Seq. rule

wp(more := x + y, wp(less := x — y, less < x < more))
Assignment rule

wp(more ;= x 4+ y,x — y < x < more)

CHALMERS/GU

Let's Prove ManyReturns Correct!

Show that Pre — wp(S, Post).
First compute wp:

wp(more := x + y; less := x — y, less < x < more)
Seq. rule

wp(more := x + y, wp(less := x — y, less < x < more))
Assignment rule

wp(more ;= x 4+ y,x — y < x < more)

Assignment rule

X—y<x<x-+y

CHALMERS/GU

Let's Prove ManyReturns Correct!

Show that Pre — wp(S, Post).
First compute wp:

wp(more := x + y; less := x — y, less < x < more)
Seq. rule

wp(more := x + y, wp(less := x — y, less < x < more))
Assignment rule

wp(more ;= x 4+ y,x — y < x < more)

Assignment rule

X—y<x<x-+y

Show that this follows from the precondition 0 < y:
O<y—-x—-y<x<x+4y

CHALMERS/GU

Let's Prove ManyReturns Correct!

Show that Pre — wp(S, Post).
First compute wp:

wp(more := x + y; less := x — y, less < x < more)
Seq. rule

wp(more := x + y, wp(less := x — y, less < x < more))
Assignment rule

wp(more ;= x 4+ y,x — y < x < more)

Assignment rule

X—y<x<x-+y

Show that this follows from the precondition 0 < y:

O<y—-x—-y<x<x+4y
which follows from the precondition by simple arithmetic.

CHALMERS/GU

Another Example

method £ (x : int) returns (y : int)
requires x > 8
ensures y > 10

{
y :=x + 1;
if (y mod 2 == 0) { y := 100; }
else { y :=y +2; }

}

Exercise: Prove f correct

Show that
x>8—= wp(y :=x+1;if---,y > 10).

CHALMERS/GU

Solution

First compute wp:
wp(y :=x+1,if yY%2==0---,y > 10)

CHALMERS/GU

Solution

First compute wp:

wp(y :=x+1,if yY%2==0---,y > 10)

Seq. rule

=wp(y == x+ 1, wp(if y%2==0---,y > 10))

CHALMERS/GU

Solution

First compute wp:

wp(y :=x+1,if yY%2==0---,y > 10)

Seq. rule

=wp(y == x+ 1, wp(if y%2==0---,y > 10))

Compute wp(if y%2 ==0---,y > 10)

CHALMERS/GU

Solution

First compute wp:

wp(y :=x+1,if yY%2==0---,y > 10)

Seq. rule

=wp(y == x+ 1, wp(if y%2==0---,y > 10))

Compute wp(if y%2 ==0---,y > 10)

If rule

= ((y%2 == 0) — wp(y := 100, y > 10))
A(—(y%2 ==0) = wp(y :=y + 2,y > 10))

CHALMERS/GU

Solution

First compute wp:

wp(y :=x+1,if yY%2==0---,y > 10)

Seq. rule

=wp(y == x+ 1, wp(if y%2==0---,y > 10))

Compute wp(if y%2 ==0---,y > 10)
If rule
= ((y%2 == 0) — wp(y := 100,y > 10))
N (y%2 == 0) = wp(y =y +2,y > 10))
Assignment rule (2x)
= ((y%2 == 0) — 100 > 10) A (~(y%2 == 0) — y + 2 > 10)

CHALMERS/GU

Solution

First compute wp:

wp(y :=x + 1;if y%2 ==0---,y > 10)

Seq. rule

= wp(y = x +1; wp(if y%2 ==0---,y > 10))

Compute wp(if y%2 ==0---,y > 10)
If rule
= ((y%2 == 0) — wp(y := 100,y > 10))
N (y%2 == 0) = wp(y =y +2,y > 10))
Assignment rule (2x)
= ((y%2 == 0) — 100 > 10) A (~(y%2 == 0) — y + 2 > 10)
Simplify
= ((y%2 == 0) — true) A (=(y%2 == 0) — y > 8))

CHALMERS/GU

Solution

First compute wp:

wp(y :=x + 1;if y%2 ==0---,y > 10)

Seq. rule

= wp(y = x +1; wp(if y%2 ==0---,y > 10))

Compute wp(if y%2 ==0---,y > 10)
If rule
= ((y%2 == 0) — wp(y := 100,y > 10))
N (y%2 == 0) = wp(y =y +2,y > 10))
Assignment rule (2x)
= ((y%2 == 0) — 100 > 10) A (~(y%2 == 0) — y + 2 > 10)
Simplify
= ((y%2 == 0) — true) A (=(y%2 == 0) — y > 8))
By a — true = true
= true A (=(y%2 ==0) — y > 8)

CHALMERS/GU

Solution

First compute wp:

wp(y :=x+1,if yY%2==0---,y > 10)

Seq. rule

=wp(y == x+ 1, wp(if y%2==0---,y > 10))

Compute wp(if y%2 ==0---,y > 10)
If rule
= ((y%2 == 0) — wp(y := 100, y > 10))
AN=(y%2 == 0) = wp(y ==y + 2,y > 10))
Assignment rule (2x)
= ((y%2 == 0) — 100 > 10) A (=(y%2 == 0) — y + 2 > 10)
Simplify
= ((y%2 == 0) — true) A (-(y%2 ==0) — y > 8))
By a — true = true
= true A\ (—(y%2 ==0) = y > 8)
By truena=a
= (~(y%2==0) =y >8) CHALMERS/GU

Another Example

wp(y := x+ 1; wp(if y%2 ==0---,y > 10))
By wp(if y%2==0---,y > 10) = (-(y%2 ==0) — y > 8)
= wp(y == x+1;(=(y%2 ==0) — y > 8))

CHALMERS/GU

Another Example

wp(y := x+ 1; wp(if y%2 ==0---,y > 10))

By wp(if y%2==0---,y > 10) = (-(y%2 ==0) — y > 8)
=wp(y :=x+1;(~(y%2==0) = y > 8))

By Assignment Rule

=(—-((x+1)%2==0) = x+1>8)

CHALMERS/GU

Another Example

wp(y := x+ 1; wp(if y%2 ==0---,y > 10))

By wp(if y%2==0---,y > 10) = (-(y%2 ==0) — y > 8)
=wp(y :=x+1;(~(y%2==0) = y > 8))

By Assignment Rule

=(—-((x+1)%2==0) = x+1>8)

Simplify

=(((x+1)%2==0)—>x>T7)

CHALMERS/GU

Another Example

wp(y := x+ 1; wp(if y%2 ==0---,y > 10))

By wp(if y%2==0---,y > 10) = (-(y%2 ==0) — y > 8)
=wp(y :=x+1;(~(y%2==0) = y > 8))

By Assignment Rule

=(-((x+1)%2==0) - x+1>8)

Simplify

=(((x+1)%2==0)—>x>T7)

To prove: x >8 — wp(y := x+ 1;if --- |y > 10)

x>8—= (~((x+1)%2==0)—x>7)

CHALMERS/GU

Another Example

wp(y := x+ 1; wp(if y%2 ==0---,y > 10))

By wp(if y%2==0---,y > 10) = (-(y%2 ==0) — y > 8)
=wp(y :=x+1;(~(y%2==0) = y > 8))

By Assignment Rule

=(-((x+1)%2==0) - x+1>8)

Simplify

=(((x+1)%2==0)—>x>T7)

To prove: x >8 — wp(y := x+ 1;if --- |y > 10)
x>8—= (~((x+1)%2==0)—x>7)

Simplify using x > 8 in RHS

=x>8— (=((x+1)%2 == 0) — true)

By a — true = true

=X > 8 — true

By a — true = true

= true

CHALMERS/GU

What Next?

While loops! J

Difficulties of While Loops
> Need to “unwind” loop body one by one
» In general, no fixed loop bound known (depends on input)

» How the loop invariants and variants are used in proofs.

CHALMERS/GU

Summary

v

>

Testing cannot replace verification

Formal verification can prove properties for all runs,
... but has inherent limitations, too.

Dafny is compiled to intermediate language Boogie.

Verification conditions (VCs) extracted, using weakest
precondition calculus rule.

VCs are logical formulas, which can be passed to a theorem
prover.

Prove that precondition imply wp.

Reading: The Science of Programming by David Gries. Chapters
6-10, bearing in mind that the notation and language differ slightly
from ours. Available as E-book from Chalmers library.

CHALMERS/GU

	Title
	Recap
	An Example Verification Proof
	What Next
	Summary

