Recap from week 1: Data types

Types and constructors

data Suit = Spades | Hearts | Diamonds | Clubs

Interpretation:

“Here 1s a new type Suit. This type has four
possible values: Spades, Hearts,
Diamonds and Clubs.”

Types and constructors

data Suit = Spades | Hearts | Diamonds | Clubs

This definition introduces five things:
— The type Suit
— The constructors

Spades - Suit

Hearts - Suit

Diamonds :: Suit
Clubs 2 Suit

Types and constructors

data Rank = Numeric Integer | Jack | Queen | King | Ace

Interpretation:

“Here is a new type Rank. Values of this
type have five possible possible forms:
Numeric n, Jack, Queen, King or Ace,
where n is a value of type Integer”

Types and constructors

data Rank = Numeric Integer | Jack | Queen | King | Ace

This definition introduces six things:

— The type Rank
— The constructors

Numeric :: ??7?
Jack el el
Queen 7?7
King i arafs

Ace el

Types and constructors

data Rank = Numeric Integer | Jack | Queen | King | Ace

This definition introduces six things:

— The type Rank
— The constructors

Numeric :: Integer — Rank
Jack L P77
Queen 1?7
King i arafs

Ace el

Types and constructors

data Rank = Numeric Integer | Jack | Queen | King | Ace

This definition introduces six things:

— The type Rank
— The constructors

Numeric :: Integer — Rank
Jack .. Rank
Queen :: Rank
King .. Rank

Ace - Rank

Types and constructors

data _Nm:x Zc3m10 _:ﬁm@mﬁ | Jack | Queen | King | Ace

Hv%o f Type _

Constructor

Types and constructors

data Card = Card Rank Suit

Interpretation:

“Here 1s a new type Card. Values of this
type have the form Card r s, where r and s
arc values of type Rank and Suit
respectively.”

Types and constructors

data Card = Card Rank Suit

This definition introduces two things:
— The type Card

— The constructor
Card :; ?7?77?

Types and constructors

data Card = Card Rank Suit

This definition introduces two things:
— The type Card

— The constructor
Card :: Rank — Suit — Card

Types and constructors

data Oma Oma _Nm:x mc:

Type. /Je@ Type

Constructor

Built-1n lists

dataa] =[] | () a[a]

o/

j

Not a legal definition,

but the built-in lists are
conceptually defined

Constructors:

] =lal

() a—la] —[a]

like this

4

Some list operations

* From the module (also 1n the

):

reverse .. [a] -> [a]
-- reverse a list

take .. Int -> [a] -> [&]
-- (take n) picks the first n elements

(++) :[a] -> [a] -> [&]
-- append a list after another

replicate . Int ->a ->[3a]
-- make a list by replicating an element

Some list operations

*Main> reverse [1,2,3]
[3,2,1]

*Main> take 4 [1..10]
[1,2,3,4]

*Main> [1,2,3] ++ [4,5,6]
[1,2,3,4,5,6]

*Main> replicate 5 2
[2,2,2,2,2]

Strings are lists of characters

type String = [Char] &
Type synonym

Prelude>'g' : "apa" definition
——mmcm:

Prelude> "flyg" ++ "plan”
"flygplan”

Prelude> ['A','p','a]
=>Um=

More on Types

* Functions can have “general” types:
— polymorphism
—reverse :: [a] — [a]
— () ra— [a] — [a]

* Sometimes, these types can be restricted
— Ord a=> ... for comparisons (<, <=, >, >=, .
—Eqa=> ... for equality (==, /=)

— Num a => ... for numeric operations (+, -, *, .

Do’s and Don’ts

guards and
boolean results

Do’s and Don’ts

comparison
with a boolean
constant

Do’s and Don’ts

comparison
with a boolean
constant

Do not make
unnecessary case

distinctions

necessary case
distinction?

; repeated code

funl :: [Integer] — Bool
funl xs = length xs == 10

Make the base
case as simple as

5 and Don’ts

possible right base

case ?

; repeated code

fun2 :: [Integer] — Integer
fun2 [] =0
fun2 (x:xs) = calc x + fun2 xs

