Introduction to Functional
Programming

Integer -> Integer

=
6 e B
7 absolute ::
8 absolute x | x >= 0 = x
9 absolute x | x < 0 -X
10

17 -- (alternative solution

12 absolute' :: Integer -> Integer
13 absolute' x | x >= 0 = x
14 | x <0 = -x
15

16 -- power x n returns x to the pc
17 Integer -> Integer -> Integer
18 1

19

20

(n-1)

power ::
x * power x

power x
power x n | n

0]

Slides by Koen Claessen and Emil Axelsson

Goal of the Course

e Start from the basics

* Learn to write small-to-medium sized
programs in Haskell

* Introduce basic concepts of computer
science

You prepare
in advance

Do not brea

The FIOW i the flow!

N

g

| explain
in lecture

/ Tuesdays, Fridays

You learn

with exercises \
Monday after

You put to practice
with lab assignments

Submit Wednesday after

Course Homepage

The course homepage will have all up-to-date
iInformation relevant for the course

— Schedule and slides
— Lab assignments

— Exercises Or go via the]
. student portal

— Last-minute changes P

— (etc.)

Exercise Sessions

Mondays

— Group rooms

Come prepared

Work on exercises together
Discuss and get help from tutor
— Personal help

Make sure you understand this week’s things
before you leave

Lab Assignments

 General information

« Start working on lab immediately when you have
understood the matter

* Submit each Wednesday
(exceptinstudy-week1)

Monday at midday (12.00)

Getting Help

* Weekly group sessions
— Personal help to understand material
* Lab supervision

— Specific questions about programming
assignment at hand

* Discussion forum ifp18.slack.com
— General questions, worries, discussions
— Finding lab partners

Assessment

* Written exam (4.5 credits)

— Consists of small programming problems to
solve on paper

— You need Haskell “in your fingers”
* Course work (3 credits)
— Complete all labs successfully

A Risk

* 8 weeks is a short time to learn programming

* So the course is fast paced
— Each week we learn a lot
— Catching up again is hard
* So do keep up!
— Read the
— Make sure you can solve the problems
— (Go to the weekly exercise sessions
— From the beginning

L ectures

You are welcome to bring your laptops
and/or smart phones to the lectures

— Use laptop to follow my live coding
— Use smart phone to take part in quizzes

... but this is completely optional!

Software

Software = Programs + Data

Software = Programs + Data

* Data is any kind of storable information, e.q:
— numbers, letters, email messages
— maps, video clips
— mouse clicks, programs

* Programs compute new data from old data:

— A computer game computes a sequence of screen
images from a sequence of mouse clicks

— vasttrafik.se computes an optimal route given a
source and destination bus stop

Programming Languages

* Programs are written in programming
languages

* There are hundreds of different programming
languages, each with their strengths and
weaknesses

* Alarge system will often contain components
iIn many different languages

Two major paradigms

Imperative programming:

* Instructions are used to change the computer's
state:
— X 1= X+1
— deleteFile("slides.pdf”)

* Run the program by following the instructions top-
down

Functional programming:

* Functions are used to declare dependencies
between data values:

—y =1(x)
* Dependencies drive evaluation

Two major paradigms

Imperative programming:

* Instructions are used to change the computer's
state:
— X 1= X+1
— deleteFile("slides.pdf”)

* Run the program by following the instructions top-
down

Functional programming:

* Functions are used to declare dependencies
between data values:

—y =1(x)
* Dependencies drive evaluation

Functional Programming

Functions are used to declare dependencies
between data values:

-y =(x)
Functions are the basic building blocks of
programs

Functions are used to compose functions into
larger functions

In a (pure) function, the result depends only on
the argument (no external communication)

Industrial Uses of Functional
Languages

Intel (microprocessor verification) Hafnium (automatic

transformation tools)
Hewlett Packard (telecom event

correlation) Shop.com (e-commerce)
Ericsson (telecommunications) Motorola (test generation)
Jeppesen (air-crew scheduling) Thompson (radar tracking)
Facebook (chat engine) Microsoft (F#)

Credit Suisse (finance) Jasper (hardware verification)

Barclays Capital (finance)

And many more!

Teaching Programming

We want to give you a broad basis

— Easy to learn more programming languages

— Easy to adapt to new programming languages
— Appreciate differences between languages

— Become a better programmer!

This course uses the functional language
Haskell

Why Haskell?

Haskell is a very high-level language
— Lets you focus on the important aspects of programming

Haskell is expressive and concise
— Can achieve a lot with a little effort

Haskell is good at handling complex data and combining
components

Haskell is defining the state of the art in programming
language development

Haskell is not a particularly high-performance language
— Prioritizes programmer-time over computer-time

Why Haskell?

To get a feeling for the maturity of Haskell
and its ecosystem, check out:

Haskell programming:

Cases and recursion

Example: The squaring function

* Given x, compute x?

-- sq X returns the square of x
sq :: Integer -> Integer
SgX=X7%X

Evaluating Functions

* To evaluate sq 5:

— Use the definition—substitute 5 for x
throughout

*sq5=5%5
— Continue evaluating expressions
*sq5=25

 Just like working out mathematics on paper

SgX=X7*X

Example: Absolute Value

* Find the absolute value of a number

-- absolute x returns the absolute value of x
absolute :: Integer -> Integer
absolute x = undefined

Example: Absolute Value

* Find the absolute value of a number
° TWO Cases' Programs must often

choose between

— If X is positive, result is x alternatives

— If x Is negative, result is -x

7

-- absolute x returns the absolute value of x

abso
abso
abso

ute ::
ute x
ute x

nteger -> Integer ﬁhink of the cases!

x>0 M hese are guards

X < 0 = undefined

Example: Absolute Value

* Find the absolute value of a number

* Two cases!
— If X is positive, result is x
— If x Is negative, result is -x

-- absolute x returns the absolute value of x

absolute :: Integer -> Integer Fill in the result in
absolute x | x>0 =x each case

absolute x | x < 0 = -x

Example: Absolute Value

* Find the absolute value of a number
 Correct the code

-- absolute x returns the absolute value of x

absolute :: Integer -> Integer >= is greater than
absolute x | x >=0=x or equal, >

absolute x| x<0 =-x

Evaluating Guards

* Evaluate absolute (-5)

— We have two equations to use!

— Substitute
* absolute (-5)|-5>=0=-5
* absolute (-5) | -5 <0 =-(-5)

absolute x [x >=0 = x
absolute x [x <0 =-x

Evaluating Guards

* Evaluate absolute (-5)
— We have two equations to use! Discard this j

— Evaluate the guards equation
* absolute (-5) | False = -5

* absolute (-5) | True = -(-5) {Keep this onej

absolute x [x >=0 = x
absolute x [x <0 =-x

Evaluating Guards

* Evaluate absolute (-5)
— We have two equations to use!

— Erase the True guard
* absolute (-5) = -(-5)

absolute x [x >=0 = x
absolute x [x <0 =-x

Evaluating Guards

* Evaluate absolute (-5)
— We have two equations to use!

— Compute the result
* absolute (-5) =5

absolute x [x >=0 = x
absolute x [x <0 =-x

Notation

* We can abbreviate repeated left hand sides

absolute x [x >=0 =x
absolute x [x <0 =-x

absolute x | x >=0 = x
| x<0 =-x

 Haskell also has if then else

absolute x = if x >= 0 then x else -x

Boolean values

* False and True are values of type Bool:

False :: Bool
True :: Bool
* Examples:

even :: Integer -> Bool
(>=) :: Integer -> Integer -> Bool

Boolean values

* False and True are values of type Bool:

False :: Bool

True :: Bool ﬁe actual types are mop
general — work for any
“integral” or “ordered” types

* Examples: % _

even :: Integral a => a -> Bool
(>=) :: Orda=>a->a->Bool

Example: Computing Powers

* Compute x" (without using built-in x*n)

Example: Computing Powers

* Compute x" (without using built-in x*n)
* Name the function

power

Example: Computing Powers

* Compute x" (without using built-in x*n)
* Name the inputs

power X n = undefined

Example: Computing Powers

* Compute x" (without using built-in x*n)
* Write a comment

-- power x n returns x to the power n
power X n = undefined

Example: Computing Powers

* Compute x" (without using built-in x*n)
* Write a type signature

-- power x n returns x to the power n
power :: Integer -> Integer -> Integer
power x n = undefined

How to Compute power?

 \We cannot write

* *

— powerxn=x*...

A Table of Powers

n power X n

0 1
1 X
2 XX

3 XXX }x - X(MD

* Each row is x times the previous one
* Define (power x n) to compute the nth row

A Definition?

power x n = X * power X (n-1)

* Testing:
Main> power 2 2
ERROR - stack overflow

ﬁ Why? j

A Definition?

power xn|n>0=x~*powerx (n-1)

* Testing:
Main> power 2 2
Program error: pattern match failure: power 2 0

A Definition? [First row of]

the table
N
power x 0 = 1

power xn|n>0=x"powerx (n-1)

* Testing:
Main> power 2 2

4
The BASE CASE

Recursion

* First example of a recursive function
— Defined in terms of itself!

power x 0 = 1
power xn|n>0=x~power x (n-1)

* Why does it work”? Calculate:
— power 2 2 =2 * power 2 1
—power21=2*power20
—power 20 =1

Recursion

* First example of a recursive function
— Defined in terms of itself!

power x 0 = 1
power xn|n>0=x"*powerx (n-1)

* Why does it work”? Calculate:
— power 2 2 =2 * power 2 1
—power21=2%*1
—power 20 =1

Recursion

* First example of a recursive function
— Defined in terms of itself!

power x 0 = 1
power xn|n>0=x"*powerx (n-1)

* Why does it work”? Calculate:
—power22=2%2
—power21=2%*1
—power 20 =1

No circularity!

Recursion

* First example of a recursive function
— Defined in terms of itself!

power x 0 = 1
power xn|n>0=x"*powerx (n-1)

* Why does it work”? Calculate:
— power 2 2 =2 * power 2 1 M
—power21=2"*power20 -
—power 20 =1

Recursion

* Reduce a problem (e.g. power x n) to a
smaller problem of the same kind

* So that we eventually reach a “smallest” base
case

* Solve base case separately
* Build up solutions from smaller solutions

Powerful problem solving strategy
% In any programming language!

Counting the regions

* nlines. How many regions?

remove one
line ..

problem is
easier!

when do

\we stop?

Counting the regions

* The nth line creates n new regions

A Solution

* Don't forget a base case

regions :: Integer -> Integer
regions 1 =2
regions n | n>1 =regions (n-1) + n

A Better Solution

* Always make the base case as simple as
possible!

regions :: Integer -> Integer
regions O =1
regions n | n >0 =regions (n-1) + n

Important data structure: lists

Example: [1,2,3,4]

Types:

-[1,2,3] .. [Integer]

— [True, False] .. [Bool]
-1[1,2,3],[4,5,6]] .. [[Integer]]
Strings are lists

— “Haskell” .. String
— “Haskell” .. [Char]

— [lHl, lal’ 'S', lkl, Iel, Ill, III] :: String

More in coming lectures
For now: Read

Material

Learn You a
Haskell for
Great Good!

A Beginner’s Guide

Book (online):
http://learnyouahaskell.com/

Lecture slides

Overview for each lecture:
http://www.cse.chalmers.se/edu/course/TDAS55/lectures.html

Material

) may not have time to cover
everything in each lecture.

You are expected to read the rest on

H/}/our own!

 Qverview for each lecture:

