

Introduction to Functional

Programming

Slides by Koen Claessen and Emil Axelsson

Goal of the Course

• Start from the basics

• Learn to write small-to-medium sized
programs in Haskell

• Introduce basic concepts of computer
science

The Flow

You prepare

in advance
I explain

in lecture

You learn

with exercises

You put to practice

with lab assignments

Tuesdays, Fridays

Monday after

Submit Wednesday after

Do not break

the flow!

Course Homepage

The course homepage will have all up-to-date

information relevant for the course

– Schedule and slides

– Lab assignments

– Exercises

– Last-minute changes

– (etc.)

http://www.cse.chalmers.se/edu/course/TDA555/

Or go via the

student portal

Exercise Sessions

• Mondays

– Group rooms

• Come prepared

• Work on exercises together

• Discuss and get help from tutor

– Personal help

• Make sure you understand this week’s things
before you leave

Lab Assignments

• General information

http://www.cse.chalmers.se/edu/course/TDA555/labs.html

• Start working on lab immediately when you have
understood the matter

• Submit each Wednesday
(except in study week 1)

Monday	at	midday	(12.00)

Getting Help

• Weekly group sessions

– Personal help to understand material

• Lab supervision

– Specific questions about programming

assignment at hand

• Discussion forum

– General questions, worries, discussions

– Finding lab partners

ifp18.slack.com

Assessment

• Written exam (4.5 credits)

– Consists of small programming problems to

solve on paper

– You need Haskell “in your fingers”

• Course work (3 credits)

– Complete all labs successfully

A Risk

• 8 weeks is a short time to learn programming

• So the course is fast paced

– Each week we learn a lot

– Catching up again is hard

• So do keep up!

– Read the material for each week

– Make sure you can solve the problems

– Go to the weekly exercise sessions

– From the beginning

Lectures

You are welcome to bring your laptops

and/or smart phones to the lectures

– Use laptop to follow my live coding

– Use smart phone to take part in quizzes

... but this is completely optional!

Software

Software = Programs + Data

Software = Programs + Data

• Data is any kind of storable information, e.g:

– numbers, letters, email messages

– maps, video clips

– mouse clicks, programs

• Programs compute new data from old data:

– A computer game computes a sequence of screen

images from a sequence of mouse clicks

– vasttrafik.se computes an optimal route given a

source and destination bus stop

Programming Languages

• Programs are written in programming

languages

• There are hundreds of different programming

languages, each with their strengths and

weaknesses

• A large system will often contain components

in many different languages

Imperative programming:

• Instructions are used to change the computer's

state:

– x := x+1

– deleteFile(”slides.pdf”)

• Run the program by following the instructions top-

down

Functional programming:

• Functions are used to declare dependencies

between data values:

– y = f(x)

• Dependencies drive evaluation

Two major paradigms

Imperative programming:

• Instructions are used to change the computer's

state:

– x := x+1

– deleteFile(”slides.pdf”)

• Run the program by following the instructions top-

down

Functional programming:

• Functions are used to declare dependencies

between data values:

– y = f(x)

• Dependencies drive evaluation

Two major paradigms

Functional Programming

• Functions are used to declare dependencies

between data values:

– y = f(x)

• Functions are the basic building blocks of

programs

• Functions are used to compose functions into

larger functions

• In a (pure) function, the result depends only on

the argument (no external communication)

Industrial Uses of Functional

Languages

Intel (microprocessor verification)

Hewlett Packard (telecom event

correlation)

Ericsson (telecommunications)

Jeppesen (air-crew scheduling)

Facebook (chat engine)

Credit Suisse (finance)

Barclays Capital (finance)

Hafnium (automatic

transformation tools)

Shop.com (e-commerce)

Motorola (test generation)

Thompson (radar tracking)

Microsoft (F#)

Jasper (hardware verification)

And many more!

Teaching Programming

We want to give you a broad basis

– Easy to learn more programming languages

– Easy to adapt to new programming languages

– Appreciate differences between languages

– Become a better programmer!

This course uses the functional language

Haskell

– http://haskell.org/

Why Haskell?

• Haskell is a very high-level language

– Lets you focus on the important aspects of programming

• Haskell is expressive and concise

– Can achieve a lot with a little effort

• Haskell is good at handling complex data and combining

components

• Haskell is defining the state of the art in programming

language development

• Haskell is not a particularly high-performance language

– Prioritizes programmer-time over computer-time

Why Haskell?

To get a feeling for the maturity of Haskell

and its ecosystem, check out:

• State of the Haskell ecosystem – August 2015

Haskell programming:

Cases and recursion

Example: The squaring function

• Given x, compute x2

-- sq x returns the square of x

sq :: Integer -> Integer

sq x = x * x

Evaluating Functions

• To evaluate sq 5:

– Use the definition—substitute 5 for x

throughout

• sq 5 = 5 * 5

– Continue evaluating expressions

• sq 5 = 25

• Just like working out mathematics on paper

sq x = x * x

Example: Absolute Value

• Find the absolute value of a number

-- absolute x returns the absolute value of x

absolute :: Integer -> Integer

absolute x = undefined

Example: Absolute Value

• Find the absolute value of a number

• Two cases!

– If x is positive, result is x

– If x is negative, result is -x

-- absolute x returns the absolute value of x

absolute :: Integer -> Integer

absolute x | x > 0 = undefined

absolute x | x < 0 = undefined

Programs must often

choose between

alternatives

Think of the cases!

These are guards

Example: Absolute Value

• Find the absolute value of a number

• Two cases!

– If x is positive, result is x

– If x is negative, result is -x

-- absolute x returns the absolute value of x

absolute :: Integer -> Integer

absolute x | x > 0 = x

absolute x | x < 0 = -x

Fill in the result in

each case

Example: Absolute Value

• Find the absolute value of a number

• Correct the code

-- absolute x returns the absolute value of x

absolute :: Integer -> Integer

absolute x | x >= 0 = x

absolute x | x < 0 = -x

>= is greater than

or equal, ¸

Evaluating Guards

• Evaluate absolute (-5)

– We have two equations to use!

– Substitute

• absolute (-5) | -5 >= 0 = -5

• absolute (-5) | -5 < 0 = -(-5)

absolute x | x >= 0 = x

absolute x | x < 0 = -x

Evaluating Guards

• Evaluate absolute (-5)

– We have two equations to use!

– Evaluate the guards

• absolute (-5) | False = -5

• absolute (-5) | True = -(-5)

absolute x | x >= 0 = x

absolute x | x < 0 = -x

Discard this

equation

Keep this one

Evaluating Guards

• Evaluate absolute (-5)

– We have two equations to use!

– Erase the True guard

• absolute (-5) = -(-5)

absolute x | x >= 0 = x

absolute x | x < 0 = -x

Evaluating Guards

• Evaluate absolute (-5)

– We have two equations to use!

– Compute the result

• absolute (-5) = 5

absolute x | x >= 0 = x

absolute x | x < 0 = -x

Notation

• We can abbreviate repeated left hand sides

• Haskell also has if then else

absolute x | x >= 0 = x

absolute x | x < 0 = -x

absolute x | x >= 0 = x

 | x < 0 = -x

absolute x = if x >= 0 then x else -x

Boolean values

• False and True are values of type Bool:

False :: Bool

True :: Bool

• Examples:

even :: Integer -> Bool

(>=) :: Integer -> Integer -> Bool

Boolean values

• False and True are values of type Bool:

False :: Bool

True :: Bool

• Examples:

even :: Integral a => a -> Bool

(>=) :: Ord a => a -> a -> Bool

The actual types are more

general – work for any

“integral” or “ordered” types

Example: Computing Powers

• Compute (without using built-in x^n)

Example: Computing Powers

• Compute (without using built-in x^n)

• Name the function

power

Example: Computing Powers

• Compute (without using built-in x^n)

• Name the inputs

power x n = undefined

Example: Computing Powers

• Compute (without using built-in x^n)

• Write a comment

-- power x n returns x to the power n

power x n = undefined

Example: Computing Powers

• Compute (without using built-in x^n)

• Write a type signature

-- power x n returns x to the power n

power :: Integer -> Integer -> Integer

power x n = undefined

How to Compute power?

• We cannot write

– power x n = x * … * x

n times

A Table of Powers

• Each row is x times the previous one

• Define (power x n) to compute the nth row

n power x n

0 1

1 x

2 x·x

3 x·x·x xn = x · x(n-1)

A Definition?

• Testing:
Main> power 2 2

ERROR - stack overflow

power x n = x * power x (n-1)

Why?

A Definition?

power x n | n > 0 = x * power x (n-1)

• Testing:
Main> power 2 2

Program error: pattern match failure: power 2 0

A Definition?

power x 0 = 1

power x n | n > 0 = x * power x (n-1)

First row of

the table

The BASE CASE

• Testing:
Main> power 2 2

4

Recursion

• First example of a recursive function

– Defined in terms of itself!

• Why does it work? Calculate:

– power 2 2 = 2 * power 2 1

– power 2 1 = 2 * power 2 0

– power 2 0 = 1

power x 0 = 1

power x n | n > 0 = x * power x (n-1)

Recursion

• First example of a recursive function

– Defined in terms of itself!

• Why does it work? Calculate:

– power 2 2 = 2 * power 2 1

– power 2 1 = 2 * 1

– power 2 0 = 1

power x 0 = 1

power x n | n > 0 = x * power x (n-1)

Recursion

• First example of a recursive function

– Defined in terms of itself!

• Why does it work? Calculate:

– power 2 2 = 2 * 2

– power 2 1 = 2 * 1

– power 2 0 = 1
No circularity!

power x 0 = 1

power x n | n > 0 = x * power x (n-1)

Recursion

• First example of a recursive function

– Defined in terms of itself!

• Why does it work? Calculate:

– power 2 2 = 2 * power 2 1

– power 2 1 = 2 * power 2 0

– power 2 0 = 1

The STACK

power x 0 = 1

power x n | n > 0 = x * power x (n-1)

Recursion

• Reduce a problem (e.g. power x n) to a

smaller problem of the same kind

• So that we eventually reach a “smallest” base

case

• Solve base case separately

• Build up solutions from smaller solutions

Powerful problem solving strategy

in any programming language!

Counting the regions

• n lines. How many regions?

remove one

line ...

problem is

easier!

when do

we stop?

Counting the regions

• The nth line creates n new regions

A Solution

• Don't forget a base case

regions :: Integer -> Integer

regions 1 = 2

regions n | n > 1 = regions (n-1) + n

A Better Solution

• Always make the base case as simple as

possible!

regions :: Integer -> Integer

regions 0 = 1

regions n | n > 0 = regions (n-1) + n

regions :: Integer -> Integer

regions 1 = 2

regions n | n > 1 = regions (n-1) + n

Important data structure: lists

• Example: [1,2,3,4]

• Types:

– [1,2,3] :: [Integer]

– [True, False] :: [Bool]

– [[1,2,3],[4,5,6]] :: [[Integer]]

• Strings are lists

– “Haskell” :: String

– “Haskell” :: [Char]

– ['H', 'a', 's', 'k', 'e', 'l', 'l'] :: String

• More in coming lectures

• For now: Read section 2.3 in LYAH

Material

• Book (online):
http://learnyouahaskell.com/

• Lecture slides

• Overview for each lecture:
http://www.cse.chalmers.se/edu/course/TDA555/lectures.html

Material

• Overview for each lecture:
http://www.cse.chalmers.se/edu/course/TDA555/lectures.html

I may not have time to cover

everything in each lecture.

You are expected to read the rest on

your own!

