

|O and Instructions

Original by Koen Claessen

How Would You do That? (1)

Suppose you wanted to model an n-sided die
die :: Int - Int

so that die n gives a random number between
1and n

Prelude> die 6
Prelude> 3
Prelude> die 6
Prelude> 4

How Would You do That? (2)

type FileName = String
readFromFile :: FileName — String

given the name of a file in your computer it
returns the contents of the file as a string

What is a function?

In mathematics a function gives a single result
for each input

In Haskell, unlike other programming
languages, functions (like in mathematics)
always give the same result whenever you

give the same argument.

—— These cannot be written in Haskell:
die :: Int — Int
readFromFile :: FileName —> String

Haskell Instructions

In Haskell this dilemma is solved by introducing
a special type for instructions (called “actions”
in LYAH).

* 1O Integer (for example) is the type of
instructions for producing an integer

* WWhen ghci has something of type 10 t it
computes the value (instructions) but also then
runs the instructions

Apple Pie

Mumsig appelpaj

Varm upp ugnen till 225 grader, blanda
ingredienserna nedan och se till att fatet ar
bade ugnsakert och insmort med margarin.
Lagg pa applena som du tarnar forst och
sen kanel och socker ovanpa. Hall pa
resten av smulpajen och lat sta i ugneni ca
25 minuter. Servera med massor av
vaniljsas!

2.5 dl mjol

100 gram margarin

5-6 applen, garna riktigt stora
1 dl socker

1 msk kanel

Mycket vaniljsas, garna Marzan

Difference?

A Simple Example

Prelude> writeFile “myfile.txt” “AnnatKalle=sant”
Prelude>

e \Writes the text “Anna+Kalle=sant” to the file
called “myfile.txt”

* No result displayed — why not?

What is the Type of writeFile?

Prelude> :1 writeFile

writeFile :: FilePath -> String -> IO ()
Just a String INSTRUCTIONS to

the operating system
to write the file

* When you give GHCi an expression of type |0, it

obeys the instructions (instead of printing the
result)

 Note: The function writeFile does not write the file

* |t only computes the instruction to write

The type ()

* The type () is called the unit type

* |t only has one value, namely ()

 We can see () as the “empty tuple”

* |t means that there is no interesting result

The type FilePath

* |s a type synonym...

 ...which is a way to give an additional name to a
type that already exists

type FilePath = String

e for convenience and/or documentation

« Remember: data creates a new type, which is
different

data Shape = Circle Float | ...

Instructions with a result value

Prelude> :1 readFile
readFi1le :: FilePath -> IO String

INSTRUCTIONS for
computing a String

Instructions vs. values — an analogy

e)

e |nstructions:
1. Take this card

2. Put the card into the ATM
3. Enter the code “1437”

4. Select “500kr”

5. Take the money

5 RIKSBANK

Which would
you rather have

Instructions vs. values — an analogy

Mumsig appelpaj

Varm upp ugnen till 225 grader, blanda
ingredienserna nedan och se till att fatet ar
bade ugnsakert och insmort med margarin.
Lagg pa applena som du tarnar forst och
sen kanel och socker ovanpa. Hall pa
resten av smulpajen och lat sta i ugneni ca
25 minuter. Servera med massor av
vaniljsas!

2.5 dl mjol

100 gram margarin

5-6 applen, garna riktigt stora
1 dl socker

1 msk kanel

Mycket vaniljsas, garna Marzan

Which would
you rather have”

Instructions with a result value

Prelude> :1 readFile
readFi1le :: FilePath -> IO String

INSTRUCTIONS for
computing a String We cannot extract

500kr from the list of
Instructions either...

* readFile “myfile.txt” is not a String
* no String can be extracted from it...

e ...but we can combine it with other
instructions that use the result

Putting Instructions Together

‘writeTwoFiles :: FilePath -> String -> IO ()
writeTwoFiles file s =
do writeFile (file ++ “1”) s
writeFile (file ++ ”2”) s

=
Use do to combine

instructions into
larger ones

7

’copyFile :: FilePath -> FilePath -> IO ()
copyFile filel file2 =
do s <- readFile filel
writeFile fileZ2 s

Putting Instructions Together

/catFiles :: FilePath -> FilePath -> IO String)
catFiles filel file?2 =
do sl <- readFile filel ,
s2 <- readFile file?2 Use do to combine
return (sl++s2) Instructions into

L | larger ones

Use return to create an
Instruction with just a result

return :: a —-> 10 a

Instructions vs. Functions

 Functions always give the same result for the
same arguments

 Instructions can behave differently on different
occasions

» Confusing them is a major source of bugs

 Most programming languages do so...
 ...understanding the difference is important!

The 1O type

data IO a -- a built-in type

putStr :: String -> IO ()

putStrLn :: String -> IO ()

readFi1le :: FilePath -> IO String
writeFile :: FilePath -> String -> IO ()
o oPe

Look in the standard
modules: System.|O,
System.”

Some Examples

e doTwice :: 10 a->10 (a,a)
e dont::10a->10 ()
« second :: [IOa]->10 a

* (see file ExamplelO.hs)

Evaluating & Executing

 |O actions of result type ()
 are just executed in GHCi

Prelude> writeFile “emails.txt” “anna@gmail.com”

* |O actions of other result types
e are executed, and then the result is printed

Prelude> readFile “emails.txt”
“anna@gmail.com”

Quiz

» Define the following function:

sortFile :: FilePath -> FilePath -> IO ()

e “sortFile file1 file2” reads the lines of file1,
sorts them, and writes the result to file2

* You may use the following standard
functions:

sort :: Ord a => [a] -> [a]
lines :: String -> [String]
unlines :: [String] -> String

Answer

sortFile :: FilePath -> FilePath -> IO ()
sortFile filel file2 =
do s <- readFile filel
writeFile file? (unlines (sort (lines s)))

General guideline:
Do as much as possible using pure
functions.
Only use IO when you have fo.

Recursive Iinstructions

 Let's define the following function:

getLine :: IO String

Prelude> getlLine
apa
W\ apall

 We may use the following standard function:

getChar :: IO Char

Two useful functions

sequence :: [IO ()] -> IO ()
sequence :: [IO a] -> IO [a]
/

|

Can be used to combine

lists of instructions into
one instruction

Analogy for sequence

sequence :: [IO a] -> IO [a

A /|

/ Cookie jar

Book of recipes
for cookies Instruction to bake

all cookies in the
book

An Example

 Let's define the following function:

writeFiles :: FilePath -> [String] -> IO ()

Prelude> writeFiles “fi1le” [“apa”,”"bepa”,”cepa’”]

Prelude> readFile “filel”
apall

\

Prelude> readFile “file3l”
\\Cepa//

 WWe may use the following standard functions:

(ShOW :: Show a => a -> String
Z1p :: [a] -> [b] -> [(a,b)]

A possible definition

pe

writeFiles :: FilePath -> [String] -> IO ()
writeFiles file xs =
sequence [writeFile (file++show 1) X

| (x,1) <- zip xs [1l..length xs]
]

We create complex
iInstructions by
combining simple
instructions

- 4

Definitions?

sequence :: [IO ()] -> IO ()

sequence :: [IO a] -> I0 [a]

Functions vs. Instructions

 Functions always produce the same results for
the same arguments

* Instructions can have varying results for each
time they are executed

 Are these functions?

putStrLn :: String -> IO ()
readFile :: FilePath -> IO String
sequence :: [IO a] -> I0 [a]

YES! They deliver
the same instructions
for the same arguments

(but executing these
instructions can have
different results)

What is the Type of doTwice?

Prelude> :1i doTwice
doTwice :: Monad m => m a -> m

Monad = Instructions

(a,a)

There are several
different kinds of
instructions!

 \We will see other kinds of instructions
(than 10) in the next lecture

Reading

Chapter 9 of Learn You a Haskell:

http://learnyouahaskell.com/input-and-output
(“Instructions” are called “actions”)

http://learnyouahaskell.com/input-and-output

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32

