
Higher-Order Functions

What is a “Higher Order” Function?

A function which takes another function as a parameter.

Examples

Prelude>	map	even	[1,	2,	3,	4,	5]

[False,	True,	False,	True,	False]	

Prelude>	filter	even	[1,	2,	3,	4,	5]			

[2,	4]	

E.g. The first argument to
map and filter must be a

function

Why Do We Want Higher-Order
Functions?

•  Generalise a repeated pattern: define a
function to avoid repeating it.

•  Higher-order functions let us abstract
definitions that are not exactly the same,
e.g. Use + in one place and * in another

•  Basic idea: name common code patterns,
so we can use them without repeating
them

Applications

Combining the elements of a list is a common operation.

Now, instead of writing a recursive function, we can just
use foldr!

product	xs					=	foldr	(*)	1	xs	
and	xs									=	foldr	(&&)	True	xs	
concat	xs						=	foldr	(++)	[]	xs	
maximum	(x:xs)	=	foldr	max	x	xs	

How do we feed Higher-Order
Functions

(Back to code)

λ-expressions

reverse xs = foldr snoc [] xs
 where snoc y ys = ys++[y]

It’s a nuisance to need to define snoc, which we only
use once! A λ-expression lets us define it where it is
used.

reverse xs = foldr (λy ys -> ys++[y]) [] xs

On the keyboard:

reverse	xs	=	foldr	(\y	ys	->	ys++[y])	[]	xs	

Defining unlines

unlines [“abc”, “def”, “ghi”] = “abc\ndef\nghi\n”

unlines [xs,ys,zs] = xs ++ “\n” ++ (ys ++ “\n” ++ (zs ++ “\n” ++ []))

unlines xss = foldr (λxs ys -> xs++“\n”++ys) [] xss

Just the same as

unlines xss = foldr join [] xss

 where join xs ys = xs ++ “\n” ++ ys

Further Standard Higher-Order
Functions

Function Composition

We can build new functions by composing
old functions using function composition

notSpace x = not (isSpace x)

notSpace = not . isSpace

Visually

isSpace	

Visually

isSpace	 ’!’	False	

Visually

isSpace	

Char Bool

not	
Bool Bool

Visually

isSpace	

Char

not	

Bool

Visually

isSpace	not	

not	.	isSpace	

Partial Applications

Haskell has a trick which lets us write down many
functions easily.

Insead of

	sum	ns	=	foldr	(+)	0	ns	

Consider this valid alternative definition:

 sum	=	foldr	(+)	0	 foldr is a
3 argument function.

It’s being
called with 2.

What’s going on?

Partial Applications

sum	=	foldr	(+)	0	

Evaluate sum	[1,2,3]	

= {replacing sum by its definition}

 foldr	(+)	0	[1,2,3]	

= {by the behaviour of foldr}

 1	+	(2	+	(3	+	0))	

= 6	

Now foldr has the
right number of

arguments!

Partial application

shout	 ”no”	

shout	::	String	->	String	

”NO”	

toUpper	::	Char	->	Char	lives in Data.List	
toUpper	’n’	=	’N’	

shout	s	=	map	toUpper	s	

Partial application

shout	 ”no”	

shout	::	[Char]	->	[Char]	
shout	s	=	map	toUpper	s	

[’N’,’O’]	

Partial application

map	
toUpper	

[’n’,’o’]	

shout	::	[Char]	->	[Char]	
shout	s	=	map	toUpper	s	

”NO”	

	
	
	

shout	

Partial application

map	
toUpper	

shout	::	[Char]	->	[Char]	
shout	=	map	toUpper	

Example: combining composition
and partial application

The standard function
all	::	(a	->	Bool)	->	[a]	->	Bool	
	
All these are True:
all	even	[2,4,6]		
all	(<10)	[1,2,3]		
not	(all	odd	[1,2,3])	

Example: combining composition
and partial application

The standard function
all	::	(a	->	Bool)	->	[a]	->	Bool	
all	p	xs	=	and	[p	x	|	x	<-	xs]	
	
	

Example: combining composition
and partial application

The standard function
all	::	(a	->	Bool)	->	[a]	->	Bool	
all	p	xs	=	and	(map	p	xs)	
	
	

Example: combining composition
and partial application

The standard function
all	::	(a	->	Bool)	->	[a]	->	Bool	
all	p	xs	=	and	(map	p	xs)	
	
all	p	=	and	.	map	p	
	
	
	
	

A combination of
partial application and
function composition

	
	
	
	
	

all	p	

Example: combining composition
and partial application

The standard function
all	::	(a	->	Bool)	->	[a]	->	Bool	
all	p	=	and	.	map	p	
	
	
	
	

map	
p	

and	

Where Do Higher-Order Functions
Come From?

•  Generalise a repeated pattern: define a
function to avoid repeating it.

•  Higher-order functions let us abstract
patterns that are not exactly the same, e.g.
Use + in one place and * in another.

•  Basic idea: name common code patterns, so
we can use them without repeating them.

Must I Learn All the Standard
Functions?

Yes and No…
•  No, because they are just defined in Haskell.

You can reinvent any you find you need.

•  Yes, because they capture very frequent
patterns; learning them lets you solve many
problems with great ease.

”Stand on the shoulders of giants!”

See	Hompage	->	Exam	->	PreludeFunctions.pdf	

What you should know and use

Operating on the whole of a list:
	map,	filter,	(concatMap)	

Operating on the front of a list
 takeWhile,		dropWhile	

Boolean
 all,	any	

Operating on Pairs
 zipWith	

Useful (not essential) but more
advanced

Simple useful functions:
 (.)	($)	flip	curry	uncurry	

Combining	list	elements	
	foldr	foldl	

Building	lists	
	iterate,	groupBy	

Summary

When to build HOFs

How to feed HOFs

 Named definition
 Lambda expressions
 Sections
 Partial application
 Composition

Lessons
•  Higher-order functions take functions as parameters,

making them flexible and useful in very many
situations.

•  By writing higher-order functions to capture common
patterns, we can reduce the work of programming
dramatically.

•  λ-expressions, partial applications, function
composition and sections help us create functions to
pass as parameters, without a separate definition.

•  Haskell provides many useful higher-order functions;
break problems into small parts, each of which can be
solved by an existing function.

Reading

•  /learnyouahaskell.com/higher-order-functions

