Higher-Order Functions

What is a "Higher Order” Function?

A function which takes another function as a parameter.

E.g. The first argument to
map and filter must be a
function

Examples

Prelude> map even [1, 2, 3, 4, 5]
[False, True, False, True, False]
Prelude> filter even [1, 2, 3, 4, 5]
[2, 4]

Why Do We Want Higher-Order
Functions?

* Generalise a repeated pattern: define a
function to avoid repeating it.

» Higher-order functions let us abstract
definitions that are not exactly the same,
e.g. Use + in one place and * in another

* Basic idea: name common code patterns,
SO we can use them without repeating

them

Applications

Combining the elements of a list is a common operation.

Now, instead of writing a recursive function, we can just
use foldr!

foldr (*) 1 xs
foldr (&&) True xs
foldr (++) [] xs
foldr max x xs

product xs

and Xxs

concat xs
maximum (X:Xs)

How do we feed Higher-Order
Functions

The Authoritative Guide to Feeding

Your Dog and Cat

FEED
YOUR PET
RIGHT

(Back to code)

MARION NESTLE

OOOOOOOO WHAT TO EAT

and MALDEN C. NESHEIM

A-expressions

reverse xs = foldr snoc [] xs
where snoc y ys = ys++[y]

It's a nuisance to need to define snoc, which we only
use once! A A-expression lets us define it where it is

used.

reverse xs = foldr (Ay ys -> ys++[y]) [] xs

On the keyboard:
reverse xs = foldr (\y ys -> ys++[y]) [] xs

Defining unlines

unlines ["abc”, “def”, “ghi”] = “abc\ndef\nghi\n”

unlines [xs,ys,zs] = xs ++ “\n” ++ (ys ++ “\n” ++ (zs ++ “\n” ++ []))

unlines xss = foldr (Axs ys -> xs++"\n"++ys) [] xss

Just the same as
unlines xss = foldr join [] xss

where join Xs ys = xs ++ “\n” ++ ys

Further Standard Higher-Order
Functions

Function Composition

We can build new functions by composing
old functions using function composition

notSpace x = not (isSpace x)

notSpace = not . isSpace

Visually

4 isspace 4um

Visually

False 4mm isSpace 4mm !’

Visually

éam not m @ isSpace 4um

Bool Bool Bool Char

Visually

- not - 1sSpace -

Bool Char

Visually

- not - 1sSpace

not . 1sSpace

Partial Applications

Haskell has a trick which lets us write down many
functions easily.

Insead of
sum ns = foldr (+) © ns

Consider this valid alternative definition:

sum = foldr (+) © foldris a N
3 argument function.

It's being
called with 2.
J - 7
\What s going on?

Partial Applications

sum = foldr (+) ©

Evaluate sum [1,2,3]
= {replacing sum by its definition}

foldr (+) © [1,2,3]

= {by the behaviour of foldr} Now foldr has the

1+ (2+ (3 +0)) right number of
arguments!

6

Partial application

shout :: String -> String
shout s = map toUpper s

"NO” 4@ shout EEEE"no”

toUpper :: Char -> Char livesin Data.List
toUpper ’n’ = °N’

Partial application

shout :: [Char] -> [Char]
shout s = map toUpper s

[’N’,’0’]- shout -”HO”

Partial application

shout :: [Char] -> [Char]
shout s = map toUpper s

toUpper
»NO” - map «_ "’ 70

Partial application

shout :: [Char] -> [Char]
shout = map toUpper

Example: combining composition
and partial application

The standard function
all :: (a -> Bool) -> [a] -> Bool

All these are True:

all even [2,4,6]

all («<10) [1,2,3]

not (all odd [1,2,3])

Example: combining composition
and partial application

The standard function
all :: (a -> Bool) -> [a] -> Bool
all p xs = and [p x | x <- xs]

Example: combining composition
and partial application

The standard function
all :: (a -> Bool) -> [a] -> Bool
all p xs = and (map p Xs)

Example: combining composition
and partial application

The standard function

all :: (a -> Bool) -> [a] -> Bool

all p =and . map p

_

~—

A combination of
partial application and
function composition

~

/

Example: combining composition
and partial application

The standard function
all :: (a -> Bool) -> [a] -> Bool
all p =and . map p

« and - map

=)
4

all p

Where Do Higher-Order Functions
Come From?

* Generalise a repeated pattern: define a
function to avoid repeating it.

* Higher-order functions let us abstract
patterns that are not exactly the same, e.q.
Use + in one place and * in another.

« Basic idea: name common code patterns, so
we can use them without repeating them.

Must | Learn All the Standard
Functions?

Yes and No...

* No, because they are just defined in Haskell.
You can reinvent any you find you need.

* Yes, because they capture very frequent
patterns; learning them lets you solve many
problems with great ease.

"Stand on the shoulders of giants!”

PreludeFunctions.pdf (page 1 of 2)

~ted functions from the
2s: Prelude Data.List
ontrol.Monad

28

-> Bool

vhere
t: a -> a -> Bool
1t a->a->a

> Num a where
1 =>a -> a

1 => a

1 => a
[nteger =-> a

> Real a where
a -> Rational

=> Integral a where
i ->a->a
a->a ->a
1 —=> Integer

ional a where
a->a->a
Rational -> a

> Floating a where
a => a
a -> a

1al a) => RealFrac a where
[ntegral b) => a -> b
(Integral b) => a =-> b

ntegral a) => a -> Bool
rem’ 2 ==
. even

n=> [ma] -> m [a]
rons (return [])

X <= p

Xs <- q

return (x:xs)

-- functions on functions

id :: a -> a
id x = X

const 2 a->b>b
const x _ = X

() :: (b => ¢
f . gq =\ x => f
flip :

flip f x y =fyx
($) :: (a => b
f $ x = f x

-> a

) => (a =>b) -> a ->c¢
(9 %)

: (a->b ->c) ->b ->a->c

) =>a ->b

-— functions on Bools
data Bool = False | True

(&&), (||) : Bool

:
True = v

-> Bool -> Bool

not :: Bool -> Bool
not True = False

not False = True

-— functions on Maybe

data Maybe a = Nothing | Just a

isJust,isNothing
isJust (Just a)
isJust Nothing

isNothing

fromJust
fromJust (Just a)

maybeToList
maybeToList Nothing
maybeToList (Just a)

listToMaybe
listToMaybe []
listToMaybe (a:_)

catMaybes
catMaybes 1s

Maybe a -> Bool
True
False

not . isJust

Maybe a -> a
a

Maybe a -> [a]
[]
[a]

[a] —> Maybe a
Nothing
Just a

[Maybe a] -> [a]
[x | Just x <- 1s]

-- functions on pairs

fst :: (a,b)
fst (x,y) = X
snd :: (a,b)
snd (X,Y) =y

-> a

-> b

—-— functions on lists

map :: (a -> b) -> [a] -> [b]
map f xs = [£ x | x <= xs]

(++) :: [a] —-> [a] —-> [a]
xs ++ ys = foldr (:) ys xs

filter :: (a —-> Bool) -> [a] —-> [a]
filter p xs = [x X <- X8, p x]
concat :: [[a]] —> [a]

concat xss = foldr (++) [] xss
concatMap :: (a -> [b]) —-> [a} -> [b]
concatMap f = concat . map

head, last :: [a] => a

head (x:_) = X

laat vl =

See Hompage -> Exam -> PreludeFunctlons pdf

init [x]
init (x:xs)

[]

X : init xs

null :: [a] -> Bool

null [] = True

null (_:) = False

length :: [a] => Int

length = foldr (const (1+)) 0
(! :: [a] => Int -> a

(x:_) 110 = X

(_:xs) !! n = xs !! (n-1)

foldr :: (a->b ->b) ->b ->[a] -> b
foldr £ z [] = z

foldr f z (x:xs) = f x (foldr f z xs)
foldl :: (a->b ->a) ->a->[b] -> a
foldl £ z [] = z

foldl £ z (x:xs) = foldl f (f z x) xs
iterate :: (a -=> a) -> a -> [a]
iterate f x = X : iterate f (f x)
repeat :: a -> [a]

repeat x = xs where xs = X:xs
replicate :: Int -> a -> [a]
replicate n x = take n (repeat x)

What you should know and use

Operating on the whole of a list:
map, filter, (concatMap)
Operating on the front of a list
takeWhile, dropWhile
Boolean
all, any
Operating on Pairs
zipWith

Useful (not essential) but more
advanced

Simple useful functions:

(.) ($) flip curry uncurry
Combining list elements

foldr foldl
Building lists

iterate, groupBy

Summary

When to build HOFs

How to feed HOFs
Named definition
Lambda expressions
Sections
Partial application
Composition

Lessons

Higher-order functions take functions as parameters,
making them flexible and useful in very many
situations.

By writing higher-order functions to capture common
patterns, we can reduce the work of programming
dramatically.

A-expressions, partial applications, function
composition and sections help us create functions to
pass as parameters, without a separate definition.

Haskell provides many useful higher-order functions;
break problems into small parts, each of which can be
solved by an existing function.

Reading

 /learnyouahaskell.com/higher-order-functions

