
The	End	of	the	Beginning	

What Have We Learned?

• Programming
– For some of you: first time

– Make the computer do some useful tasks

• Programming Language
– Haskell

– Different from what most of you had seen
before

• Programming Principles
– ...

Programming Principles (I)

• Modelling

– Create a new type that models what you are

dealing with

– Design and define typed functions around

your types

– Sometimes your type has an extra invariant

– Invariants should be documented (for

example as a property)

Programming Principles (II)

• Properties

– When you define functions around your

types...

– Think about and define properties of these

functions

– Properties can be tested automatically to find

mistakes

– Mistakes can be in your functions (program)

or in your properties (understanding)

Programming Principles (III)

• Breaking up problems into simpler parts,

recursion

– When you need to solve a large, complicated

problem...

– Continue breaking up until the parts are simple,

or until you can use an existing solution

– The parts can be solved recursively

– Solve the whole problem by combining the

solutions of all parts

Programming Principles (IV)

• Abstraction and Generalization

– When you find yourself repeating a

programming task

– Take a step back and see if you can

generalize

– You can often define an abstraction (higher-

order function) performing the old task and

the new one

– Avoid copy-and-paste programming

Programming Principles

• Important!

• Independent of programming language

Report from the front

“Läste kursen 2010 när jag började på D och lärde

mig mycket, fast jag tyckte att jag kunde

programmera innan. Fick 2012 jobb på Ericsson och

programmerade då i Python, och använde då

dagligen tekniker som jag lärde mig i kursen,

framförallt då rekursion, operationer på listor och

delar av det funktionella programmeringssättet som

var nytt för mig 2010.”

Report from the front

“En vanlig fråga/missuppfattning som jag minns från

början av Chalmers är just 'varför Haskell? Ingen

använder det på riktigt i industrin', och det kan vara

värt att påminna en extra gång om att man lär sig

metoder och tankesätt som är användbara oavsett

vilket språk man sedan kodar i.”

Why Haskell?

• What is easy in Haskell:

– Defining types

– Properties and testing

– Recursion

– Abstraction, higher-order functions

– Pure functions

– Separation (laziness)

Why Haskell (II)?

• What is harder in Haskell:

– Ignoring types

• Static strong typing

• Expressive type system

– Most advanced type system in a real-world language

– Impure functions

• All functions are pure

– Unique among real-world languages

• Instructions are created and composed explicitly

– Makes it clear where the ”impure stuff” happens

Coming Programming Courses

• Grundläggande
datorteknik
– Assembler

• Objektorienterad
programming
– Java

• Inbyggda system

– C

• Data structures
– Java

– Haskell

D-line GU

• Two programming
courses
– Both in Java

• Datastructures
– Java

– Haskell

Future Programming Courses

• Concurrent Programming

• Compiler Construction

• Advanced Functional Programming

• Parallel Functional Programming

• Software Engineering using Formal Methods

• Language Technology

• (Programming Paradigms)

• ...
All use

Functional

Programming in

some way

Exam:	31	October	14:00	

student.portal.chalmers.se/sv/chalmersstudier/tentamen/Sidor/Tentamensdatum.aspx	

What	if…	
You	are	not	done	with	the	labs	in	time?	
•  Next	year:	this	course	runs	again	
•  complete	the	missing	labs	according	to	the	
deadlines	and	rules	given	

You	do	not	pass	the	exam?	
•  January:	re-exam	
•  August:	re-exam	

What	you	should	know	to	pass	

In	general	
•  Do	not	expect	to	pass	by	learning	old	exam	
questions!	

•  Do	not	assume	that	old	exam	questions	will	
come	up	again	this	year.			

•  show	that	you	understand	by	writing	more-or-
less	correct	Haskell	code	for	some	small	
problems	

	
	

Basic	Programming	Techniques	

•  Definition	by	recursion	(lists	and	numbers)	
•  Definition	using	list	comprehensions	
	
– Write	simple	functions	
– Understand	definitions	
– Rewrite	definitions	written	in	one	style	using	
another	

	
example:	af	function	in	2016	exam	

Combining	functions	

•  Give	definitions	which	combine	the	use	of	
other	standard	functions	

example:	urls	function	in	2016	
	

Simple	higher-order	functions	

Understand	and	use	simple	higher-order	
functions	
for	example:	map,	filter,	takeWhile,	dropWhile,		
	zipWith,	all,	any	

	
Define	a	simple	higher-order	function	e.g.	to	
simplify	cut-and-paste	code.		
	

Predicates	

Writing	functions	that	return	something	of	type	
Bool	
	
Show	that	you	understand	and	can	formulate	
properties	of	functions	(e.g.	quickCheck	
properties)		
	
e.g.	prop_Lookup	from	2016	exam	
	
	

Simple	Data	types	

•  Define	simple	data	types	to	model	a	problem	
domain	(both	with	and	without	recursion)	

	
•  Define	functions	using	given	recursive	or	non-
recursive	data	type	

Examples:	
– prop_lookup	(exam	2016)	uses	the	Maybe	type	
– Defining	a	data	type	for	expressions	(2016)	

“Instructions”		

Defining	simple	functions	using	IO	or	Gen	
	
•  small	definitions	using	do-notation	
•  understand/simplify	definitions	that	use	do	
notation	

	

To	pass	(2017	onwards)	

	
Correct	answers	to	5	of	7	simple	questions	
	
	

How	did	it	go	this	year?	

New	things:	lab	3	spread	over	three	weeks	
	Too	slow?	

	
New	lab	4	(A	+	B)	
	Too	hard/easy?	

	
Course	communication	via	Slack	
	Good	for	us!	Good	for	you?	

	

Official	Course	Survey	

•  Sent	by	email	Monday	after	the	exam	

•  What	is	the	point?	

•  We	are	open	to	suggestions	for	questions	that	
we	should	put	on	the	survey.		

