
Graphical interfaces &
event-driven programming
Lecture 12 of TDA 540
Object-Oriented
Programming

Jesper Cockx
Fall 2018
Chalmers University of Technology — Gothenburg University



Last week: Inheritance in Java



Inheritance

1 / 41



Polymorphism

If S is a subtype of T, an expression of type S
can be used wherever an expression of type T

is expected.

2 / 41



Inheritance: constructors

3 / 41



Interfaces

4 / 41



Kahoot: Inheritance in Java



Graphical user interfaces



GUIs: Graphical user interfaces

6 / 41



Graphical components

A GUI consist of (graphical) components:

label

text field
button

scroll barframe/window

(content) pane

Each component corresponds to an object in Java.
7 / 41



GUIs and object-oriented programming

GUI programming is a domain where object-oriented
programming shines:

• Graphical components (windows, buttons, scroll
bars, …) are modelled by classes.

• Relations between components are captured by
inheritance.

• Polymorphism supports flexible reuse of the
different components, without worrying about
implementation details.

8 / 41



AWT vs. Swing

Java has two main GUI libraries:

• AWT (Abstract Windowing Toolkit)
• First Java GUI toolkit
• Native implementation (⇒ very fast)
• Looks different depending on system

• Swing
• Java implementation
• Looks the same on all systems
• Implemented on top of AWT

We will use mostly Swing, which is newer and has some
advantages over AWT.

9 / 41



Overview of Swing classes

Swing is huge: 18 packages, 100s of classes.
10 / 41



The structure of a Swing GUI

• Top-level: JFrame or JDialog
• Secondary components: JPanel
• Atomic components: JButton, JTextField,

JTable, JScrollBar, …

11 / 41



The JFrame class

A frame represent one window of a GUI.

JFrame frame = new JFrame();
frame.setSize(300,200);
frame.setTitle("Hello, world!");
frame.setDefaultCloseOperation(

JFrame.EXIT_ON_CLOSE);
frame.setVisible(true);

12 / 41



The JFrame class

A frame represent one window of a GUI.

JFrame frame = new JFrame();
frame.setSize(300,200);
frame.setTitle("Hello, world!");
frame.setDefaultCloseOperation(

JFrame.EXIT_ON_CLOSE);
frame.setVisible(true);

12 / 41



The JPanel class

A panel can contain several components:
buttons, labels, text fields, …
The components in a frame are organized into panels.

JPanel panel = new JPanel();
frame.add(panel); // add the panel to our frame

JButton button = new JButton();
button.setText("Click me!");
panel.add(button); // add button to the panel

JLabel label = new JLabel();
label.setText("This is good GUI.");
panel.add(label); // add label to the panel

13 / 41



The JPanel class

A panel can contain several components:
buttons, labels, text fields, …
The components in a frame are organized into panels.

JPanel panel = new JPanel();
frame.add(panel); // add the panel to our frame

JButton button = new JButton();
button.setText("Click me!");
panel.add(button); // add button to the panel

JLabel label = new JLabel();
label.setText("This is good GUI.");
panel.add(label); // add label to the panel

13 / 41



Customizing JFrame with inheritance

A GUI often consists of many components.

To organize these components, we can create a subclass
of JFrame with all components as (private) attributes:

class MyFrame extends JFrame {
private JPanel panel;
private JButton button1;
// ...

}

14 / 41



Customizing JFrame with inheritance
public class HelloFrame extends JFrame {

private JPanel panel; private JButton button; private JLabel label;

public HelloFrame() {
setSize(300,200);
setTitle("Hello, world!");
setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
setVisible(true);

panel = new JPanel();
button = new JButton();
button.setText("Click me!");
label = new JLabel();
label.setText("This is good GUI");

}

public static void main(String[] args) {
new HelloFrame();

}
} 15 / 41



Event-driven programming



Event-driven programming

Before:
the computer is in
control of the program

Now:
the user controls the
flow of the program
himself.

16 / 41



Event-driven programming

In event-driven programming:

• The program listens for external events
• The user decides which events to trigger

Examples of events:

• User clicks a button
• User enters some text
• Mouse moves over a certain area
• …

17 / 41



The publish/subscribe model

In the publish/subscribe model, components (buttons,
…) act as publishers of events, and special objects called
event handlers listen and respond to these events.

1. The event handler subscribes to a publisher.

2. When an event is triggered, the publisher notifies
all subscribed listeners.

3. When it is notified, the event handler executes
some code in response to the event.

18 / 41



The publish/subscribe model in Java

1. Event handlers (= listeners) implement the ActionListener
interface.

public interface ActionListener {
void actionPerformed(ActionEvent event);

}

2. Components (= publishers) offer a method to subscribe to its
events.

public class JButton { // ...
addActionListener(ActionListener l) { ... }

}

3. When an event is triggered, the component notifies its
listeners by calling actionPerformed.

19 / 41



Publish/subscribe example

// An action listener that responds to button clicks
class ClickListener implements ActionListener {

public void actionPerformed(ActionEvent actionEvent) {
System.out.println("That tickles!");

}
}

// ...

JButton button = new JButton();
button.setText("Click me!");
panel.add(button);

ActionListener listener = new ClickListener();
button.addActionListener(listener);

20 / 41



Changing the state of the GUI in response
to an event

In theory: publishers and handlers act
independently.

In practice: handlers often need to change
parts of the GUI.

⇒ the handler needs access to the GUI state.

21 / 41



A button that changes text

public class CountClicks implements ActionListener {
private JButton button;
private int count;

CountClicks(JButton button) {
this.button = button;
count = 0;

}

// whenever a click occurs
public void actionPerformed(ActionEvent evt) {

// increment counter
count++;
// change the button's text
button.setText("You clicked " + count + " time(s)");

}
}

22 / 41



Some events and listener interfaces

listener methods components
ActionListener actionPerformed JButton, JComboBox,

JTextField, …
FocusListener focusGained

focusLost
JComponent

MouseListener mouseClicked
mouseClicked
mouseEntered
mouseExited
…

JComponent

KeyListener keyPressed
keyReleased
keyTyped

JComponent

InputMethodListener caretPositionChanged
inputMethodTextChanged

JTextComponent

23 / 41



Inner classes



Inner classes
To avoid passing GUI components to the ClickListener, you can
move ClickListener to inside the main class.

public class ClickMeFrame extends JFrame {
private JButton button;

class ClickListener implements ActionListener {
public void actionPerformed(ActionEvent event) {

button.setText("That tickles!");
}

}
// ...

}

This is called an inner class in Java.
24 / 41



Inner classes

An inner class is a class defined in the body of
another class.

Each object of the inner class is linked to an
object of the surrounding class, and can access
its private attributes and methods.

Inner classes cannot include static members
(except for constants).

25 / 41



Inner class example

public class Top {
int a;
class I {

int three() {
return 3;

}
int getA() {

return a;
}

}
}

Top t = new Top();
Top.I i = t.new I();
int x = i.three(); // x == 3
t.a = 4;
Top.I j = t.new I();
int y = j.getA(); // y == 4

26 / 41



Why use inner classes?
As an alternative to inner classes, we could make
ClickMeFrame implement ActionListener:

class ClickMeFrame extends JFrame implements ActionListener {
public void actionPerformed(ActionEvent event) { ... }

public ClickMeFrame() {
JButton button = new JButton();
button.addActionListener(this);
// ...

}
}

But this doesn’t work very well with multiple events…

⇒ Use a dedicated handler for each event.
27 / 41



Anonymous inner classes

If I is an interface, we can declare an anonymous inner
class and immediately create a single object of this class:

public interface I {
int m();

}

I someObject = new I() {
int m() {

// ...
}

}

28 / 41



Anonymous inner class example

public class ClickMeFrame extends JFrame {
private JButton button;

public ClickMeFrame() {
button = new JButton();
ActionListener listener = new ActionListener() {

public void actionPerformed(ActionEvent event) {
button.setText("That tickles!");

}
}
button.addActionListener(listener);

}
}

29 / 41



Some more GUI components



Partial overview of Swing components

• JLabel: simple text label or picture
• JButton: clickable button
• JComboBox: pull-down menu with mutually-exclusive options
• JList: list of selectable options
• JTextField: single-line text
• JTextArea: multi-line text
• JScrollPane: scroll bar
• JToolBar: list of clickable buttons
• JOptionPane: pop-up dialog box

30 / 41



JTextField and JTextArea

JTextField is a single-line text field.

JTextArea is a multi-line text area.

Methods (for both JTextField and JTextArea):

• String getText()

• void setText(String text)

• void append(String text)

• void setEditable(Boolean isEditable)

31 / 41



Live coding: a GUI for toRobberSpeak
and toPigLatin

32 / 41



Implementing your own components

You can define your own components by creating a
subclass of JComponent and overriding paintComponent:

public class MyComponent extends JComponent {
public void paintComponent(Graphics g) {

// ...
}

}

paintComponent is called when frame is first shown,
resized, or when repaint() is called.

33 / 41



Using the Graphics class

Graphics offers several methods for drawing and filling
shapes: drawRect/fillRect, drawOval/fillOval,
drawLine, drawString, …

To change the color used by Graphics, call
g.setColor(Color c).

34 / 41



Live coding: displaying shapes in a GUI

35 / 41



Layout managers



Layout managers

A layout manager automatically determines the location
of components within a panel.

Each layout manager follows a different criterion to
position components as they are added to a frame by
calling add.

Layout managers provide flexibility:

• no absolute positioning

• automatic rearrangement of components when the
frame is resized

36 / 41



Some examples of layout managers

• FlowLayout (default in Swing):
add components in rows

• GridLayout: add components in
fixed grid

• BorderLayout: divide panel in 5
areas (north, south, east, west,
center)

• null: no automatic layout, have
to specify coordinates manually
(not recommended)

37 / 41



Multithreading



Heavy computations in GUIs

When implementing a GUI, responsiveness is very
important: we don’t want the GUI to ‘freeze’ when doing
a long computation.

button.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent e) {

// encode 2-hour video in high resolution
}

});

Instead, we can run an expensive computation in the
background by creating a new thread.

38 / 41



Multithreading with Swing
A SwingWorker (a thread in Java) can run a computation in the
background without blocking the GUI:

• Create the worker:

SwingWorker<String,Object> worker =
new SwingWorker<String,Object>() {

public String doInBackground() {
// ...

}
}

• Start computation: worker.execute()

• Check if computation is finished: worker.isDone()

• Get the result after completion: worker.get()

39 / 41



Multithreading example
public class MeaningOfLifeFinder {

public static void main(String[] args) {
final JLabel label = new JLabel();
SwingWorker<String,Object> worker =

new SwingWorker<String, Object>() {
public String doInBackground() {

String theMeaning = findTheMeaningOfLife();
label.setText(theMeaning);
return theMeaning;

}
};

worker.execute();
}

private static String findTheMeaningOfLife() {
for (long i = 0; i < Long.MAX_VALUE; i++) { }
return "42";

}
}

40 / 41



What’s next?

Next lecture:
Reasoning about program correctness.
To do:

• Read the book:
• Today: chapter 10
• Next lecture: no specific reading

• Hand in lab #6
• Start on lab #7

41 / 41


	Last week: Inheritance in Java
	Graphical user interfaces
	Event-driven programming
	Inner classes
	Some more GUI components
	Layout managers
	Multithreading

