
Graphical interfaces &
event-driven programming

Lecture 12 of TDA 540 (Objektorienterad Programmering)

Carlo A. Furia Alex Gerdes

Chalmers University of Technology – Gothenburg University
Fall 2017

Pop quiz!
1. Go to kahoot.it

2. Enter PIN shown on projector screen

3. Pick a nickname and go!

kahoot.it

Polymorphism: reminder of formal definitions

More rigorously, polymorphism is a type compatibility rule:

If S is a subtype of T, an expression of type S can be used
wherever an expression of type T is expected.

Since objects of type S are a specialization of objects of type T (a
Convertible is a Car!), polymorphism still supports compiler checks
and avoids type incompatibility errors.

interface List<E> {

E get(int index);

void add(int index, E e);

int size();

}

List<String> l;

// the following operations are

// consistent with the List interface

l.add(0, "hej");

l.add(1, " då");

if (l.size() > 0)

System.out.println(l.get(0) + l.get(1));

2 / 35

GUIs: Graphical User Interfaces

This class is about programming graphical interfaces (GUIs) in Java.

The Java language framework provides an extensive collection of
libraries for GUI programming. Thus, programming GUIs means
learning how to use those libraries.

GUI programming is a domain where object-oriented programming
shines:

• classes model different graphical components (windows, buttons,
scroll bars, . . .)

• the relations between components (e.g. different buttons, or a
button as a specialized component) are captured by inheritance

• polymorphism supports flexible reuse of the different
components, without worrying about implementation details

3 / 35

More documentation about Java GUIs

Some pictures in this class are taken from the detailed Java GUI
programming tutorial by Chua Hock Chuan at
www3.ntu.edu.sg/home/ehchua/programming/java/j4a_gui.html

Another recommended tutorial is the official Java Swing tutorial at
http://docs.oracle.com/javase/tutorial/uiswing/index.html

As usual, the AWT and Swing API documentations are also useful:

• https://docs.oracle.com/javase/8/docs/api/javax/swing/

package-summary.html

• https://docs.oracle.com/javase/8/docs/api/java/awt/

package-summary.html

4 / 35

www3.ntu.edu.sg/home/ehchua/programming/java/j4a_gui.html
http://docs.oracle.com/javase/tutorial/uiswing/index.html
https://docs.oracle.com/javase/8/docs/api/javax/swing/package-summary.html
https://docs.oracle.com/javase/8/docs/api/javax/swing/package-summary.html
https://docs.oracle.com/javase/8/docs/api/java/awt/package-summary.html
https://docs.oracle.com/javase/8/docs/api/java/awt/package-summary.html

Graphical components

GUI programming relies extensively on the notion of (graphical)
components. A component is a class modeling an actual graphical
element of the GUI.

label

text field

button

scroll barframe/window

(content) pane

5 / 35

AWT vs. Swing

AWT (Abstract Windowing Toolkit) and Swing are the two main
libraries for GUI programming in Java.

We will use mostly Swing, which is newer and has some advantages
over AWT. However, every GUI typically needs at least some basic
AWT components, and hence we have to learn at least the basics of
AWT as well.

AWT SWING

heavyweight: Java interface to
native GUI components imple-
mentations

lightweight: Java GUI compo-
nents implementations

may look different on different
systems

consistent “look and feel”
across different systems

generally faster (native) slower (implemented in Java)
relies on AWT for top-level con-
tainers

6 / 35

AWT

• Historically, first Java library for GUI programming

• AWT components are Java classes wrapping native libraries on
different operating systems (OS X, Windows, GTK+, . . .)

• Platform independent (like all Java), but does not look the same
on all systems

• Swing uses AWT for top-level components, to bootstrap the
visualization of the GUI

7 / 35

AWT components

AWT classes distinguish between components and containers: each
container can include one or several components.

8 / 35

AWT components

AWT classes distinguish between components and containers: each
container can include one or several components.

8 / 35

AWT in a nutshell

AWT is huge: 12 packages, hundreds of classes.

Main packages, which are also (partially) used in Swing applications:

• java.awt: components and containers, and layout managers

• java.awt.event: event-handling library

9 / 35

Swing components

Swing classes have names that start with J, so we can immediately
distinguish them from AWT components.

10 / 35

Swing in a nutshell

Swing is huge: 18 packages, hundreds of classes.

Main package:

• javax.swing: Swing components and containers

Since Swing components are implemented on top of AWT
components, you typically need to import some of the libraries from
AWT even when developing a pure Swing application.

11 / 35

The structure of Swing GUIs

• Top-level component: usually JFrame or JDialog

• Secondary components (containers), used to group and layout
simpler components: often JPanel

• Atomic components, which correspond to the various GUI
elements: JButton, JTextField, JTable, JScrollBar, . . .

The layout of the atomic components within the containers is normally
done using layout managers, which are introduced independently of
the component structure and content.

12 / 35

How to build a Swing frame

1. Create a class that inherits from a top-level component (JFrame)
2. Set up a content pane within the top-level component class

2.1 either get the default content pane from the top-level component
2.2 or create your own JPanel and set it to the top-level component

3. Normally, set a layout manager of the content pane
4. Add components to the content pane
5. Set the top-level frame to visible, and possibly specify other

options

In all examples use:

// basic AWT components, and layout managers

import java.awt.*;

// event-handling library

import java.awt.event.*;

// Swing components

import javax.swing.*;
13 / 35

A simple Swing frame: version 1

This example uses the default content pane and no layout manager.

public class SimpleFrame extends JFrame {

protected Container contentPane;

SimpleFrame() {

// get the default content pane, which is an AWT container

contentPane = this.getContentPane();

// add a text label

contentPane.add(new JLabel("I’m just a simple frame!"));

// close the window when clicking on close

setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

// resize frame to fit components tightly

pack();

// do display the frame!

setVisible(true); } }

14 / 35

A simple Swing frame: creating and displaying

This is how you can create and display a frame defined by class
SimpleFrame from main.

public static void main(String[] args)

{ SwingUtilities.invokeLater(new Runnable() {

@Override

public void run() {

new SimpleFrame();

}

}); }

While we could just create SimpleFrame directly, using invokeLater is
a better practice that avoids problems when writing more complex
GUI applications.

15 / 35

A simple Swing frame: version 2

This example uses a JPanel content pane and a flow layout manager.
public class SimpleFrame extends JFrame {

protected JPanel contentPane;

SimpleFrame() {

// set the content pane to a Swing JPanel

contentPane = new JPanel();

this.setContentPane(contentPane);

// set a "flow" layout manager

contentPane.setLayout(new FlowLayout());

// add a text label, and a button

contentPane.add(new JLabel("Hej!"));

contentPane.add(new JButton("Click here!"));

setTitle("FRAME"); // frame title

setSize(200, 50); // fixed size

setVisible(true); // do display the frame!

} }
16 / 35

A few useful Swing components

• JLabel: simple text label or picture

• JButton: clickable button

• JComboBox: pull-down menu with mutually-exclusive options

• JList: list of selectable options

• JTextField: single-line text

• JTextArea: multi-line text

• JScrollPane: scroll bar

• JToolBar: list of clickable buttons (or other components)

• JOptionPane: pop-up dialog boxes (typically spawned in
response to events)

17 / 35

Layout managers

Layout managers are AWT facilities (also usable with Swing
components) that simplify arranging components in a frame. Layout
managers provide flexibility:

• no absolute positioning, and hence no dependence on the
settings of the computer that will display the GUI

• when the user resizes the frame, layout managers rearrange the
components to fit the new frame

Each layout manager follows a different criterion to position
components as they are added to a frame by calling add.

For more complex layouts, nest JPanels at certain positions, and use
different layout managers in each nested panel.

Setting the layout manager to null contentPane.setLayout(null)

uses absolute positioning, where we have to manually specify the
coordinates and size of each component. This is usually very tedious,
inflexible, and not necessary.

18 / 35

Some examples of layout managers

Each layout manager follows a different criterion to position
components as they are added to a frame by calling add.

• FlowLayout (the default of JPanel): add
components on a row, left to right; when the
row is filled, start a new row below

• GridLayout: add components in a matrix of
fixed dimensions; add left to right, and top
to bottom

• BorderLayout: add each component to one
of five fixed zones (north, south, east, west,
and center)

More layouts shown at http:
//docs.oracle.com/javase/tutorial/uiswing/layout/visual.html

19 / 35

http://docs.oracle.com/javase/tutorial/uiswing/layout/visual.html
http://docs.oracle.com/javase/tutorial/uiswing/layout/visual.html

Root panes

Top-level components such as JFrame are themselves layered into
several panes:

We have already seen the (default) content pane.

• The layered pane is to control positioning of the menu bar with
respect to the content pane

• The menu bar is optional, and disabled by default

• The glass pane is invisible by default; it can be used for adding
color or clickable areas across components

20 / 35

Changing the way components look

Swing provides a consistent look across platforms, but it also offers
the possibility of switching to a customizable “look and feel”.

• Metal (or Cross Platform) is the Swing default
• System is the native look and feel of the operating system

running the application (Windows, macOS, GTK, . . .)
Note: use System if you need DPI scaling – if text looks too small
in high-resolution environments

• Synth is a customizable look and feel
• Multiplexing supports using different look and feels for different

parts

// before everything GUI-related

try { UIManager.setLookAndFeel(// set System look & feel

UIManager.getSystemLookAndFeelClassName());

} catch (ClassNotFoundException | InstantiationException |

IllegalAccessException | UnsupportedLookAndFeelException e)

{ System.out.println("Using default look and feel!"); }
21 / 35

Event-driven programming

The programs we have written so far are sequential: statements are
executed one after the other, from the entry point in main, according
to which conditions occur during execution.

However, a GUI must be able to execute statements according to
some events that may occur at any time while the program is running:
mouse clicks, window resizing, keys pressed, Thus, reactive
GUIs follow a style of programming called event-driven programming.

WHAT HAPPENS EXAMPLE

An event involving a compo-
nent occurs

A close-window button is
clicked

The component notifies
handlers of the event

The button notifies the win-
dow manager

The handler executes and
reacts to the event

The window manager
closes the windows

22 / 35

Publish/subscribe communication model

Java GUIs support event-driven programming according to the
publish/subscribe model.

• Components are publishers of events.

• Other objects implement event-handling code specific to a
certain event.

• A handler for an event E subscribes (that is, registers) to a
component that publishes events E.

• Whenever a component triggers an event E, it notifies all
handlers for that event that have been registered.

• A notified handler executes its code in response to the event.

• Eventually, control returns to the component.

23 / 35

Publish/subscribe event-handling in Java

Java GUIs support event-driven programming according to the
publish/subscribe model.

• Swing components include methods of the form
addEListener(EListener handler) to register handlers of a
specific event E

• Type EListener corresponds to an interface, whose methods
are called whenever the corresponding events are triggered

• A handler for event E is an object of a subtype of EListener;
that is, the handler’s class implements interface E

• Whenever a component triggers an event E, it notifies all
handlers for that event that have been registered by calling the
proper method of EListener

In general, handlers and publishers are completely independent. In
practice, they often need to communicate and share state, because
“handling” an event often requires to change some parts of the GUI.

24 / 35

A button that changes text

Swing component JButton includes a method
addActionListener(ActionListener handler) to register handlers of
the “action” event (clicking the button).

public class ClickableButton extends JFrame {

ClickableButton() {

// ...

// initial text of button

JButton button = new JButton("You never clicked!");

// ...

// CountClicks handler registers with the button

button.addActionListener(new CountClicks(button))

// ...

}

}

25 / 35

A button that changes text

Interface ActionListener includes a single method actionPerformed,
called when the corresponding event is triggered (clicking the button).

public class CountClicks implements ActionListener {

private JButton button; private int count;

CountClicks(JButton button)

{ this.button = button; count = 0; }

// whenever a click occurs

public void actionPerformed(ActionEvent evt) {

// increment counter

count++;

// change the button’s text

button.setText("You clicked " + count + " time(s)");

}

}

26 / 35

A button that changes text

27 / 35

Some events and listener interfaces

LISTENER METHODS COMPONENTS

ActionListener actionPerformed JButton, JComboBox,
JTextField,. . .

FocusListener focusGained

focusLost

JComponent

MouseListener mouseClicked

mouseClicked

mouseEntered

mouseExited

. . .

JComponent

KeyListener keyPressed

keyReleased

keyTyped

JComponent

InputMethodListener caretPositionChanged

inputMethodTextChanged

JTextComponent

28 / 35

Inner classes

The handler class is often coupled with the component’s class, and it
is very simple (it only implements the listener interface’s methods).
Java offers anonymous inner classes to supply methods
implementations directly where we instantiate the listener.

public class ClickableButton extends JFrame {

ClickableButton() {

// ...

JButton button = new JButton("You never clicked!");

// ...

// instantiate an object of the anonymous inner class

// which is being defined directly

button.addActionListener(new ActionListener() {

public void actionPerformed(ActionEvent e) {

button.setText("You clicked!");

}});

// ...

} } 29 / 35

Nested classes

Anonymous inner classes are just one type of nested classes. A
nested class is a class defined inside another class, which may
access some of its private data. The opposite of nested class is
top-level class: these are the classes we have seen so far.

• static nested class: no reference to the outer (non-static)
instance

• inner classes: can reference the outer class instance

• anonymous inner classes: inner class without a name, defined
as part of an expression

• local inner classes: inner class with name, defined as part of an
expression

30 / 35

Static nested classes

A static nested class:

• can reference only static members of the enclosing class
(besides its own arguments and locals)

• can itself include both static and non-static members

• it behaves as a top-level class: nesting affects naming, not
behavior

public class Top {

static class SN {

static int five()

{ return 5; }

int three()

{ return 3; }

}

}

int y = Top.SN.five(); // y == 5

Top.SN o = new Top.SN();

int x = o.three(); // x == 3

31 / 35

Inner classes

An inner class:

• cannot include static members (other than constants)

• can reference the outer class instance: all instances of the inner
class refer to the instance of the outer class used to create them

• can be created only through an instance of the outer class

public class Top {

int a;

class I {

int three()

{ return 3; }

int getA()

{ return a; }

}

}

Top t = new Top();

Top.I i = new t.new I();

int x = i.three(); // x == 3

t.a = 4;

Top.I j = new t.new I();

int y = j.getA(); // y == 4 == i.m()

32 / 35

Anonymous and local inner classes

An anonymous or local inner class:

• cannot include static members (other than constants)
• can reference the outer class instance: all instances of the inner

class refer to the instance of the outer class used to create them
• cannot access local variables of its enclosing class (except

constants)

public class ClickableButton extends JFrame {

int counter = 0;

ClickableButton() {

// ...

button.addActionListener(new ActionListener() {

public void actionPerformed(ActionEvent e) {

button.setText("Counter: " + counter);

}});

// ...

} }
33 / 35

Heavy computations in GUIs

In event-driven programs such as GUIs, a handler that takes too long
to react may compromise the responsiveness of the whole GUI.

button.addActionListener(new ActionListener() {

public void actionPerformed(ActionEvent e) {

// encode 2-hour video in high resolution

}

});

To avoid this problem, we should allocate such heavy computations to
a special executor (thread) in the Java system, which can run the
computation in the background without blocking the GUI.

34 / 35

Swing workers

We allocate heavy computations to a special executor (thread) in the
Java system, which can run the computation in the background
without blocking the GUI.

SwingWorker worker = new SwingWorker<Void, Void>() {

@Override

public Void doInBackground() {

// encode 2-hour video in high resolution

return null;

}

};

• Start the worker’s computation: worker.execute()
• Check whether the worker has finished computing:
worker.isDone() (returns boolean)

• Get the results of the worker’s computation after completion:
worker.get()

35 / 35

