
Objects and Classes

Lecture 10 of TDA 540 (Objektorienterad Programmering)

Carlo A. Furia Alex Gerdes

Chalmers University of Technology – Gothenburg University
Fall 2017



All labs have been published

Descriptions of the four remaining lab assignments (“Laboration 5–8”)
are available on the course website:

http://www.cse.chalmers.se/edu/year/2017/course/TDA540/

• Do not work on them all at once: plan your time wisely

• Some Java topics used in the labs will be covered during the
upcoming classes

• The TAs will start grading submissions only after each lab’s
deadline

1 / 44

http://www.cse.chalmers.se/edu/year/2017/course/TDA540/


Object-oriented programming: a minimal history

Mid 1960s Ole-Johan Dahl and Kristen Nygaard de-
velop SIMULA 67, the first object-oriented
programming language

1970s Alan Kay, Adele Goldberg, and others de-
velop Smalltalk, a popular object-oriented
language, and introduce the term “object-
oriented programming”

Mid 1980s Bertrand Meyer develops Eiffel, which
popularized object technology for the
whole software development lifecycle

Mid 1980s Bjarne Stroustrup’s C++ adds object-
orientation to C, making it a widely used
programming paradigm

Today many programming languages also sup-
port some form of object-oriented features

2 / 44



Objects and objects

The basic principles of object-oriented programming are inspired by
the idea of modeling real objects as data structures in a program
running on a computer.

3 / 44



Objects and objects

The basic principles of object-oriented programming are inspired by
the idea of modeling real objects as data structures in a program
running on a computer.

name: "Prof. Smith"

Teacher

id: 1

Student

id: 2

Student

id: 3

Student

id: 4

Student

teacher: students:

Classroom

Array
3 / 44



Objects-oriented programming languages and objects

Object-oriented programming provides expressive features to
abstract, modularize, and facilitate reuse of complex programs.

In practice:

• abstraction of complex data types

• inheritance

• polymorphism

• dynamic binding/dispatching

4 / 44



Classes

An object-oriented program is an organized collection of classes.

A class is a module of code that defines data (the state) and
operations on those data (abstract data type).

• a class defines a type
• “class” is a static notion: it refers to program text

class BankAccount // user-defined class

{

Integer balance; // data: how much money in the account

void deposit(Integer amount) { // operation:

// add ‘amount’ to ‘balance’

balance = balance + amount;

}

}

5 / 44



Objects

Objects are instances of classes.

• an object stores values of certain type (object state = value)

• “object” is a dynamic notion: objects exist when a program
executes

CLASS OBJECT

model/mold instance

static dynamic

type value of a type

Integer 42

BankAccount balance: 42

6 / 44



Objects and object references

Since objects are dynamic entities while classes are static entities,
how can we refer to objects in the program text? Variables of
reference types (or simply references) provide a means to do so.

class BankAccount

{

Integer balance; // ‘balance’ is the name of a reference

// attached to an object of class Integer

// whose state represents an integer value

void deposit(Integer amount) {

balance = balance + amount;

// change the state of the object of class Integer

// attached to reference ‘balance’

}

}

7 / 44



The object reference this

Every class implicitly has a special reference this, which refers to the
current object of the enclosing class.

class BankAccount

{

Integer balance;

void setNewBalance(int balance) {

this.balance = balance;

}

}

8 / 44



The life of an object

What we can do with an object obj:

initialize: before first using obj, we have to create it

read state: in an expression that refers to some components of
obj’s state (directly or through a method call)

modify state: by calling a method on obj

dispose: implicit in Java when an object becomes unreachable

BankAccount account;

account = new BankAccount(); // create a new object

if (account.balance == 0) { // expression referring to

// ‘balance’ in ‘account’

System.out.println("No money available");

}

account.deposit(1000); // modify ‘balance’ in ‘account’

System.out.println("Now you have " + account.balance + " kr.");

9 / 44



What is in a class?

The components of a class are called its members:

attributes: represent data components

methods: represent operations

constructors: special methods for initializing objects

class BankAccount {

// attribute

Integer balance;

// method

void deposit(Integer amount) { balance = balance + amount; }

// constructor

BankAccount() { balance = 0; }

}

10 / 44



Visibility of members

The visibility of a class member defines where in a program we can
refer to that member (read the value of an attribute, or call a method).

Visibility modifiers are keywords to define the visibility of a member x:

• private: x is only visible in the enclosing class

• default (no keyword): x is visible within the package where the
enclosing class is defined

• protected: x is visible within the same package and in every
subclass of the enclosing class

• public: x is visible everywhere in the program

Visibility modifiers cannot be applied to constructors.

11 / 44



Visibility of members: examples

package p;

class A {

private int a;

int b;

protected void x()

{ a = 3; }

public void y()

{ b = 4; }

private void z()

{ a = b; }

}

package p;

class Z {

public static

void main(String[] args) {

A o = new A();

o.a = 1; // ERROR!

o.b = 2; // OK

o.x(); // OK

o.y(); // OK

o.z(); // ERROR!

}

12 / 44



Visibility of classes

The visibility of a class defines where in a program we can refer to
and create objects of that class.

Visibility modifiers are keywords to define the visibility of a (top level)
class C:

• default (no keyword): C is visible within the package where it is
defined

• public: C is visible everywhere in the program

A constructor has the same visibility of its enclosing class.

A class is top level when it is not defined inside another class. The
opposite is a nested class, which can have any visibility level (like any
other class member). This course mainly deals with top-level classes.

13 / 44



Attributes

Attributes are also called instance variables or fields.

• Each attribute represents part of the state of the object of the
class where the attribute is declared

• Attributes are declared within a class’s curly braces, outside any
method’s body

• They should not be confused with local variables (declared inside
method bodies)

• Attributes are visible (that is accessible) at least within the
methods of the class where they are declared

• When creating an object, attributes are implicitly initialized to
default values according to their types

• Constructors can introduce different initialization values

14 / 44



Attributes: initialization

class BankAccount

{

// money in the account

Integer balance = 100;

// name of the owner

String owner;

// year when account

// was opened

int openYear;

}

BankAccount account;

account = new BankAccount();

// initialization of attributes:

// account.balance == 100

// account.owner == null

// account.openYear == 0

15 / 44



Methods

Methods are also called instance methods or member functions.

• Each method represents an operation that can be executed on
objects of the class where the method is declared

• Two kinds of operations (one method can do both):

procedures (commands) modify the object state
functions (queries) return information about the object state

• Methods are declared within a class’s curly braces:

t0 methodName(t1 a1, t2 a2, ...) { /* body/implementation */ }

• may have arguments (use () after method name if no arguments)
• must have a return type t0 (use void if method returns no value)

• Methods are visible (that is callable) at least within the methods
of the class where they are declared

16 / 44



Method declaration examples

class BankAccount {

private int balance;

// procedure: modify state, no returned value

void deposit(int amount)

{ balance = balance + amount; }

// function: return value, do not modify state

int getBalance()

{ return balance; }

// procedure and function (function with side effects)

int withdrawAndBalance(int amount)

{ balance = balance - amount;

return balance; }

}

17 / 44



Methods good practices: getters and setters

1. Keep attributes private/protected, so that they cannot be
modified directly by objects of other classes

2. Provide getter methods to indirectly get the value of attributes

3. Provide setter methods to indirectly set the value of attributes

class BankAccount {

private int balance;

int getBalance()

{ return balance; }

void setBalance(int amount)

{ balance = amount; }

}

18 / 44



Advantages of using getters and setters

• Decoupling: you can change the internal representation of an
object’s state, without affecting other classes

• Encapsulation: the class retains control over how and when its
state is changed

First version:

class BankAccount {

private int balance;

int getBalance()

{ return balance; }

void setBalance(int amount)

{ balance = amount; }

}

Second version:

class BankAccount {

private int checking;

private int savings;

int getBalance()

{ return checking + savings; }

void withdraw(int amount)

{ if (checking > amount)

checking = checking - amount; }

}
19 / 44



Information hiding

Information hiding is the practice of restricting the visibility of
attributes, decoupling their private and public representations, and
controlling how to modify the state and who can modify it.

Information hiding is one way in which object-oriented programs
provide abstraction.

The publicly visible attributes and methods of a class are the class’s
public interface or API (Application Programming Interface).

Note that Java’s keyword interface identifies a specific mechanism
to define public interfaces in Java, but the concept of public interface
is more general (in fact we have not discussed Java’s interface yet).

20 / 44



Clients

A piece of code that manipulates objects of a class C is a client of C.

• Information hiding is a way of decoupling the client’s view and the
internal representation of a class

• As long as a class does not change its public interface, clients do
not have to worry about changes in the class’s internal
representation

Public interface:

class BankAccount {

int getBalance()

{ /* ... */ }

void withdraw(int amount)

{ /* ... */ }

}

Client code:

BankAccount account;

account = new BankAccount();

// we don’t have to worry how getBalance

// computes the balance from

// the internal representation

if (account.getBalance() > 100)

System.out.println("Can buy lunch!");

21 / 44



Constructors

Constructors are special methods:

• They must have the same name as the class where they are
defined

• They have no return type (not even void)

• They are responsible for initializing attributes of the enclosing
class (in a way different from the default values)

• If a class C declares no constructors, new C() gives an object of
class C with all attributes initialized to default values (default
constructor)

• A class may have multiple constructors with different arguments

• A constructor is invoked implicitly when evaluating a new

expression

22 / 44



Constructors: examples

Notice the usage of this to refer to attributes with the same name as
a method’s argument.

class Account {

int balance;

String owner;

Account()

{ balance = 100; }

Account(int balance)

{ this.balance = balance; }

Account(String owner)

{ this.owner = owner; }

}

// client code

Account a1 = new Account();

Account a2 = new Account(3000);

Account a3 = new Account("John Doe");

23 / 44



Overloading

Overloading means declaring several methods in the same class that
have the same name but different signatures: their arguments differ in
number, type, or both.

Calls to overloaded methods pick the right method based on the
number and type of actual arguments.

class BankAccount {

int balance;

void deposit(int amount) { balance = balance + amount; }

void deposit() { deposit(100); }

void deposit(double amount) { deposit((int) amount); }

void deposit(String amount) { deposit(Double.parseDouble(amount)); }

}
24 / 44



Constants

The keyword final specifies that an attribute, argument, or local
variable is constant:

• they cannot be changed after they are initialized
• final attributes must be explicitly initialized by every constructor

(or directly where the attribute is declared)

Style tip: constant attribute names normally are in all caps.

class Dice

{

final int SIDES;

Dice() { SIDES = 6; }

Dice(int sides) { SIDES = sides; }

void setSides(int sides) { SIDES = sides; } // Error!

} 25 / 44



Static members

Attributes and methods declared using the keyword static relate to
the whole class where they are declared, as opposed to each
instance (object) independently from the others. Thus, static
members behave very differently from the instance members we have
seen in this class so far.

class Bank {

static double interest = 0.02;

static double interest(double amount)

{ return amount * (1 + interest); }

}

if (new Date() == NEW_YEAR)

{

balance =

Bank.interest(balance);

}

26 / 44



Static members

Attributes and methods declared using the keyword static relate to
the whole class where they are declared, as opposed to each
instance (object) independently from the others. Thus, static
members behave very differently from the instance members we have
seen in this class so far.

• a static attribute is a state component shared by every object of
the class where it is declared

• a static method can only reference static members, as well as
its local variables and arguments

• static members are accessed using their class name instead of
an object reference; thus, they are accessed without creating
objects of their enclosing class

27 / 44



The main method

The method main with signature

public static void main(String[] args)

is a static method that runs first whenever we run a Java program.

From main (which does not need any objects to run because it is a
static method) all objects in the program are created as the program
continues executing.

28 / 44



When to use static members?

In object-oriented programming:

• instance members are the norm
• static members are used only for special cases

Instance members capture the state of and operations on objects:

OPERATION INSTANCE

create object: Account a = new Account();

modify object state: a.deposit(100);

read current object state: if (a.balance() > 100) ...

Static members capture global operations and state that are available
independent of the created objects:

ITEM STATIC

constant: double angle = Math.PI/4.0;

math operation: double cathetus = hypothenuse * Math.cos(angle);

global state: double interest = BankAccount.interest;
29 / 44



Static or instance?

Rule of thumb to choose whether member m should be static:

Does it make sense to call (method) or access (attribute)
m independent of specific objects of its class?

1. If the answer is yes, then you probably need a static member;

2. If the answer is no, then you should go with an instance member.

In most cases, the answer should be no!

30 / 44



Static or instance: examples

class BankAccount {

private int balance;

public

void withdraw(int amount) {

balance = balance - amount;

}

public

void deposit(int amount) {

balance = balance + amount;

}

}

Both withdraw and deposit modify the state (attribute balance) of the
current object: they must be instance methods.

31 / 44



Static or instance: examples

class BankAccount {

private static final double interest = 0.02;

public static double interest() {

return interest;

}

public static int percentInterest() {

return (int) (interest() * 100);

}

}

Both interest and percentInterest are independent of specific
instances of class BankAccount, as they both depend on constant
interest, which is shared by all instances of BankAccount: they must
be static methods.

32 / 44



Static or instance: examples

public class Car {

public static int addInterest(BankAccount account,

double interest) {

double withInterest = account.balance() * interest;

account.deposit((int) withInterest);

}

}

The operation addInterest is independent of objects of class Car, as
it only operates on objects of class account. Therefore, it is
technically OK that it is a static method; however, it probably indicates
questionable design: addInterest should probably be an instance
method of class BankAccount.

33 / 44



Inheritance

Inheritance is a mechanism to reuse previously defined classes in the
definition of new classes.

class C extends B

declares a class C that inherits from a class B.

• all members of B are also implicitly members of C
• C is a subclass (descendant, heir) of B;

conversely, B is a superclass (predecessor, ancestor) of C

class Account {

int balance;

void deposit(int amount)

{ balance += amount; }

}

class FullAccount extends Account {

void withdraw(int amount)

{ deposit(-amount); }

void close()

{ balance = 0; }

}
34 / 44



Overriding

When creating a class by inheritance, we can also override (that is,
redefine) any methods that are inherited from the superclass.

• a method’s signature cannot change when overriding it
(except for return types: see covariant redefinition rule)

• a method’s visibility can only increase
(e.g. from protected to public)

• a static method cannot be overridden

Inheritance and overriding support flexible code reuse.

class Account {

int balance;

void withdraw(int amount)

{ balance -= amount; }

}

class NoOverdrawnAccount extends Account {

// redefinition of withdraw

@Override

void withdraw(int amount)

{ if (amount <= balance)

balance -= amount; }

}
35 / 44



super: referencing the superclass

The keyword super denotes a reference to an instance of the
superclass. It is useful to reuse code while overriding.

class Account {

int balance;

void withdraw(int amount)

{ balance -= amount; }

}

class NoOverdrawnAccount extends Account {

@Override

void withdraw(int amount)

{ if (amount <= balance)

super.withdraw(amount); }

// call withdraw’s implementation

// in Account

}

36 / 44



Shadowing: local variables over attributes

It is forbidden to have multiple variables (local variables or attributes)
with the same name declared in the same scope (definition block).
However, it is possible to have variables with the same name
declared in different but overlapping scopes.

In this cases one variable implicitly shadows the other (that is only
one variable is accessible):

• a local variable shadows an attribute with the same name
• use this to access the attribute

class BankAccount {

int balance;

void setBalance(int balance) {

// two variables named ‘balance’ are visible here:

// 1. the method argument ‘balance’

// 2. the class attribute ‘balance’

// 1. shadows 2.

this.balance = balance; } }
37 / 44



Shadowing: attributes over attributes

It is forbidden to have multiple variables (local variables or attributes)
with the same name declared in the same scope (definition block).
However, it is possible to have variables with the same name
declared in different but overlapping scopes.

In this cases one variable implicitly shadows the other (that is only
one variable is accessible):

• a subclass attribute shadows a superclass attribute with the
same name (note: this is not the same as overriding; suggestion:
avoid redefining attributes!)

• use super to access the attribute in the superclass

class Car {

String factoryId = "ZZZ0000";

}

class Volvo extends Car {

String factoryId = "VLV0000";

}

System.out.println(new Car().factoryId); // "ZZZ0000"

System.out.println(new Volvo().factoryId); // "VLV0000"
38 / 44



final methods and classes

The keyword final can also be used to restrict inheritance:

• a method marked as final cannot be overridden

• a class marked as final cannot be inherited from

39 / 44



Inheritance and types

Every class C corresponds to a type, which is a set of values and
operations on those values. If C is a subclass of another class B, we
call the type of C a subtype of the type of B.

Informally, the type of C is a more specialized variant of the type of B.
“More specialized” means that everything we can do on objects of
class B, we can also do on objects of class C (inheritance); but the
latter may also offer more features (new attributes and methods).

We say that C and B are related by the “is a” relation: an object of
class C is an object of class B (but not vice versa).

class Car {

void openDoor()

{ /* ... */ }

}

class Convertible extends Car {

void openTop()

{ /* ... */ }

}

A convertible is a car!
40 / 44



Static or instance: examples

public class Car extends Vehicle {

String factoryId() {

return "Car-" + super.id();

}

}

Method factoryId depends on super, which is a reference to an
object of the superclass Vehicle: it must be an instance member,
otherwise super may not be defined.

41 / 44



Static or instance: examples

public class X extends Y {

@Override

public int z() {

return 42;

}

}

Method z overrides a method with the same signature in the
superclass Y of X. Overriding only applies to instance methods, and
hence z cannot be static.

42 / 44



The Object class

The system class Object is implicitly a superclass of all Java classes:
even when we do not use extends, every class implicitly inherits from
Object, which provides a number of basic operations.

Methods of Object that is useful to override:

• public boolean equals(Object obj) is used to compare objects
by value (according to the specific states of your objects)

• public int hashCode() is used to return a unique integer value
for different object values, and should be consistent with equals:
o1.equals(o2) if and only if o1.hashCode() == o2.hashCode()

class BankAccount {

public boolean equals(Object other)

// if ‘other’ is not of class BankAccount, this does not work!

{ return this.balance == other.balance; }

public int hashCode()

{ return this.balance; } }
43 / 44



Checking the dynamic type of references

Sometimes it is useful to check the type of a reference within the
program. To this end, the expression

variable instanceof RefType

evaluates to true if and only if variable is attached to an object
whose type is RefType or a subtype of RefType.

• use instanceof sparingly: in most cases checking the type
explicitly is not needed (type checking does that when compiling)

• the one case where it is useful is when overriding equals, which
must take an argument of type Object

class BankAccount {

boolean equals(Object other) {

if (!(other instanceof BankAccount))

return false; // a different type, so cannot be value-equal

else { return this.balance == other.balance; } }

}
44 / 44


