
Software design
Lecture 14 of TDA 540
Object-Oriented
Programming

Jesper Cockx
Fall 2018
Chalmers University of Technology — Gothenburg University



Last week: recap

• Pre- and post-conditions
(@requires and @ensures)

• Invariants (@invariant)
• The Exception hierarchy
• Software verification

• Code inspection
• Testing (unit testing and integration testing)
• Formal verification

1 / 64



This week

Recap of classes and inheritance

How to design a software project?

+ some other topics:

• Enumerated types (enums)
• Recursion

2 / 64



Classes and inheritance recap



Classes

A class describes a collection of objects with the same
public interface and representation of their internal
state:

class Glass { // user-defined class
private double volume; // state
void addWater(double amount) { // operation

volume = volume + amount;
}

}

3 / 64



What is in a class?

A class defines:

• How objects of that class are represented
in computer memory (the attributes)

• What methods are available on objects of
the class (the methods)

• How to create new objects of that class
(the constructors)

Each class also defines a new type.

4 / 64



Objects vs. classes

A class is a static entity:
it refers to a piece of code.

An object is a dynamic entity:
it is only created when the program executes.

An object is an instance of a certain class.

5 / 64



Attributes
An attribute (also called an instance variable or a field) represents
part of an object’s state.

• Each object has its own copy of the attributes

• Attributes can be of primitive or reference type

• final attributes cannot change once the object has been
created

Attributes are declared in the class body:

class Glass {
double volume; // current contents in ml
final double maxVolume; // maximum volume
// ...

}
6 / 64



Methods

A method (also called an instance method or a member
function) represents an operation that can be executed
on objects of the class.

A method can modify the object state and/or return
information about the object state.

Methods are declared in the class body:

class Glass {
// ...
public void addWater(double x) { volume += x; }
// ...

}
7 / 64



Constructors

A constructor is a special method that creates a new
object of the class.

• Constructors have the same name as the class

• A constructor has no return type (not even void!)

• It should give an initial value to all attributes
(uninitialized attributes get default value)

Constructors are declared in the class body:

public Glass(double size) {
volume = 0;
maxVolume = size;

} 8 / 64



Using a constructor

To use a constructor, we use the new keyword:

Glass glass = new Glass(100);

The result of new Glass(100) is a reference to the new
object.

9 / 64



Visibility of members

The visibility of a class member (attribute or method)
determines where in a program we can refer to that
member:

• private: x is only visible in the enclosing class

• protected: x is visible within the same package

• public: x is visible everywhere in the program

10 / 64



Encapsulation / information hiding

An important role of classes is to hide
information from the rest of the program.

The client only has to know the public
methods and constructors = the API
(Application Programming Interface).

The (private) state can change while the rest of
the program stays the same.

⇒ Abstraction!
11 / 64



Information hiding: example

Public interface:
class Glass {

/* attributes invisible */

Glass(double size) {
/* body invisible */

}

double getVolume() {
/* body invisible */

}

void addWater(double amount) {
/* body invisible */

}
}

Client code:
Glass glass;
glass = new Glass(500);

// we don't have to worry how addWater
// and getVolume are implemented

glass.addWater(300);
if (glass.getVolume() > 100) {

System.out.println(
"Can drink water!");

}

12 / 64



Static members

A static member belongs to the whole class, not an individual
object.

• A static attribute is shared among all object of the class
• A static method can only use static attributes and other
static methods

• A constructor can never be static

Static members are accessed using the class name:

class CoinPurse {
static int[] COIN_SIZES =
{ 1 , 2 , 5 , 10 };

// ...
}

int[] coins =
CoinPurse.COIN_SIZES;

for (i : coins) {
// ...

}

13 / 64



Static or instance?

Rule of thumb:

Does it make sense to call (method) or access (attribute)
m independent of specific objects of its class?

1. Yes: you probably need a static member

2. No: you should go with an instance member

In most cases, the answer should be no!

14 / 64



Inheritance

Inheritance = relation between a general class (the
superclass) and a more specific one (the subclass)

Example: a car is a vehicle
⇒ Car is a subclass of Vehicle

In Java:

class Vehicle { ... }
class Car extends Vehicle { ... }

All members (attributes and methods) of Vehicle are
automatically also members of Car.

15 / 64



Inheritance and types

Every class C corresponds to a type.

If C is a subclass of another class B, then C is a subtype of
B: an object of type C can be used as an object of type B.

class Vehicle { ... }
class Car extends Vehicle { ... }

A car is a vehicle!

16 / 64



Liskov’s substitution principle

A program that expects an object of a superclass should
also work when given an object of a subclass instead.

e.g. a program that works with a Vehicle should also
work for a Car.

• Subclass can only add new attributes and
methods, never remove them

• Return types of methods can only become more
specific

• Argument types can only become more general
17 / 64



Overriding

Overriding = redefine a method from the superclass

class Account {
int balance;

void withdraw(int amount) {
balance -= amount;

}
}

class NoOverdrawnAccount
extends Account {
// redefinition of withdraw
@Override
void withdraw(int amount) {

if (amount <= balance)
balance -= amount;

}
}

18 / 64



super: referencing the superclass

The keyword super denotes a reference to the current
object as an instance of the superclass.

class Account {
int balance;
void withdraw(int amount) {
balance -= amount;

}
}

class NoOverdrawnAccount
extends Account {
@Override
void withdraw(int amount) {

if (amount <= balance)
// call withdraw
// from Account
super.withdraw(amount);

}
}

19 / 64



When to create a new subclass?

Not every kind of object needs its own
subclass:

• If objects vary in their behaviour
⇒ different subclasses

• If objects only vary in some values
⇒ one class is enough

20 / 64



Interfaces

An interface is a list of abstract operations describing
the public interface (API) of a class.

public interface IGlass {
double getCurrentVolume();
void addWater(double amount);
void removeWater(double amount);

}

All methods are automatically public and abstract.

No attributes1 or constructors.
1Except for static final attributes

21 / 64



Interfaces and classes

A class can implement one or more interfaces:

• it must override all methods of the interfaces

• it can also introduce other members (private or
public) without restrictions

class Glass implements IGlass {
private double volume;
int getCurrentVolume() {

return volume;
}
// ... other attributes and methods ...

}
22 / 64



Interfaces and inheritance

An interface also can inherit from one or more interfaces
(but not from classes), by providing additional public
methods (or constants).

interface IAccount {
void deposit(long amount);
// ...

}

interface ISavingAccount
extends IAccount {

static final double INTEREST = 0.001;
void addInterest();

} 23 / 64



Polymorphism

Polymorphism: we can switch between different
concrete implementations of an interface without
changing anything else in the program!

interface List<E> {
E get(int index);
void add(int index, E e);
int size();

}

List<String> l;
l = // choose any List implementation
l.add(0, "hej");
l.add(1, " då");
if (l.size() >= 2)
String s = l.get(0) + l.get(1);
System.out.println(s);

24 / 64



Polymorphism

Advantages of using polymorphism:

Decoupling You can think about (and use!) an
interface without worrying about the
implementation.

Cohesion If you know how to use one
implementation of List, you know how to
use all of them.

Component-based design You can switch out
one part of the code for another without
changing the overall behaviour.

25 / 64



Enumerated types



Enumerated types (enums)

An enumerated types (enum) is a type with a
finite number of values.

• yes / no / don’t know
• days of the week: Monday / Tuesday / …/
Sunday

• age ranges: infant / adolescent / adult /
senior

26 / 64



Enum example

enum Answer { YES, NO, DONT_KNOW };

Type Answer has 3 values:
Answer.YES, Answer.NO, and Answer.DONT_KNOW.

27 / 64



Software design



Software design

Knowing how to program is only the first step
towards writing good programs.

good
≃

correct, readable, modifiable, efficient, …

There are many design principles and
techniques that help to write better programs.

28 / 64



Software design

Software design step by step:

• Gather requirements
• Determine classes and their
responsibilities

• Define a public interface for each class
• Determine the (private) instance variables
and constructors

• Implement methods and constructors
• Test the program

29 / 64



Design principles

• Don’t repeat yourself
• Keep it simple
• Hide implementation details
• Design for change

30 / 64



Design principle 1: Don’t repeat yourself

• use constants with expressive names
• write new methods that abstract common
functionality

• use libraries whenever possible instead of
implementing it yourself

31 / 64



Design principle 2: Keep it simple

• when a method or class becomes too big,
split it up in multiple parts

• use inheritance to hide details and keep
high-level code understandable

• use expressive constructs (e.g. exceptions)
only when they simplify the program

32 / 64



Design principle 3:
Hide implementation details

• hide details with visibility modifiers
(private and protected) whenever
possible

• define interfaces that define the
outside-facing behaviour of a class

• use interfaces rather than concrete classes
for the types of arguments and variables
(e.g. use List<String> x instead of
ArrayList<String> x)

33 / 64



Design principle 4: Design for change

• write generic code: don’t commit to a
specific class if you don’t have to (e.g.
instead of class CoinPurse where ...
define class Purse<A> where ...)

• abstract beyond the specific example
• but don’t overdo it!

34 / 64



Top-down design vs bottom-up design

Top-down design: Start with abstract
high-level interfaces and refine the
components iteratively by adding details until
everything is concrete.

Bottom-up design: Design/reuse individual
concrete components and combine them to
build more complex components until the
overall functionality is implemented.

35 / 64



Top-down design example
Step 1: define high-level abstract interface

interface AccountI {
void deposit(int amount);

}

Step 2: refine some aspects of the interface by adding details …

abstract class AbstractAccount implements AccountI {
Account() { }
abstract void deposit(int amount); // add `amount' to `balance'

}

Step 3: …until everything is concrete

class Account extends AbstractAccount {
int balance;
Account() { balance = 0; } // set balance to 0
void deposit(int amount) { balance += amount; } // add `amount' to `balance'

}

36 / 64



Bottom-up design example
Step 1: design/reuse individual concrete components

class Account { /* ... */ }
class Person { /* ... */ }
class ArrayList<E> { /* ... */ } // taken from the Collections framework

Step 2: combine them to build more complex components …

class PersonalAccount extends Account {
Person owner; // ...

}

Step 3: …until the overall functionality is implemented

class Bank {
final float interest = 0.02;
ArrayList<PersonalAccount> accounts;
void depositInterest() {

for (a : accounts) { a.deposit(a.balance * interest); }
}
// ...

} 37 / 64



Top-down vs bottom-up design

Java supports both top-down and bottom-up
design:

• top-down: inheritance, abstract classes,
interfaces

• bottom-up: encapsulation, polymorphism,
assertions & exceptions

Which one is best depends on the specific
problem.

38 / 64



Designing individual classes



Discovering classes and methods

If you’re unsure what classes to create, look at
the problem description:

• Nouns correspond to classes
• Verbs correspond to methods

Don’t overdo it: not every noun needs to be its
own class.

39 / 64



Cohesion

A class is cohesive if all its public methods are
closely related to the concept represented by
the class.

If a class contains many unrelated methods (=
low cohesion), it’s often possible to split it into
multiple classes.

40 / 64



Cohesion example

public class CoinPurse { // ...
public void add1KrCoins(int amount) { ... }
public void add2KrCoins(int amount) { ... }
public void add5KrCoins(int amount) { ... }
public void add10KrCoins(int amount) { ... }

}

⇓

public class Coin { // ...
public int getValue() { ... }

}

public class CoinPurse { // ...
public void addCoins(Coin coin, int amount) { ... }

} 41 / 64



Relationships between classes

• Dependency: A knows about B
A uses objects of type B as method argument,
return value, or local variable
e.g. a Car can transport a Person

• Aggregation: A has a B
A has one or more objects of type B as instance
variable(s)
e.g. a Car has four Tires

• Inheritance: A is a B
A is a subclass of B
e.g. a Car is a Vehicle

42 / 64



Coupling

Coupling = how much classes depend on each other

A small program with high coupling is much harder to
change than a large program with low coupling.

⇒ Avoid unneccessary coupling!
43 / 64



Single- vs bi-directional relations

Single-directional relation: A knows about B

Bi-directional relation:
A knows about B and B knows about A

• An Account knows which Person it belongs to:
class Account {
Person owner; /* ... */

}

• A Person has a list of all its Accounts:
class Person {
List<Account> accounts; /* ... */

}
44 / 64



Keeping bidirectional relations consistent

It’s important to keep bidirectional relations consistent:

• If account.getOwner() == john then account must
be in john.getAccounts()

• If account is in john.getAccounts() then
account.getOwner() must be john

Tip: give one class the responsibility for managing the
relation.

45 / 64



class Person {
private List<Account> accounts;
public Person() { accounts = new ArrayList<Account>(); }
protected addAccount(Account a) {

assert a.getOwner() == this; // check that this person
accounts.add(a); // is indeed the owner

}
}

class Account {
private Person owner;
public Person getOwner() { return owner; }
public Account(Person owner) {

this.owner = owner;
owner.addAccount(this); // make sure owner knows

} // about this account
}

46 / 64



Refactoring



Refactoring

Software development always involves trial and error:
you hardly ever get the program right at the first try!

Refactoring = changing the design or implementation
without changing the overall functionality:

• introduce constants

• move some code to a separate method

• make a private method public or vice versa

• replace a concrete type by a more abstract type

• add a new superclass or interface to a class

• …
47 / 64



Refactoring: method extraction example

Before refactoring:

void deposit(int amount)
{ if (amount > 0)

balance += amount; }

void withdraw(int amount)
{ if (amount > 0)

balance -= amount; }

After refactoring:

void deposit(int amount)
{ if (isPositive(amount))

addAmount(amount); }

void withdraw(int amount)
{ if (isPositive(amount))

addAmount(-amount); }

private boolean isPositive(int amount)
{ return amount > 0; }

private void addAmount(int amount)
{ balance += amount; }

48 / 64



Refactoring and testing

The goal of refactoring is to change the
implementation without changing the overall
functionality.

Use tests to ensure you don’t change the
functionality by accident.

To refactor effectively, you need good tests!

49 / 64



Recursion



Recursion in programming

A recursive method is a method that calls itself on
different arguments:

// compute 2x, for x ≥ 0
int pow2(int x) {

if (x == 0)
return 1;

else
return 2 * pow2(x - 1);

}

pow2(x - 1) is a recursive call of the method pow2 to
itself.

50 / 64



Recursion in programming

To be terminating, a recursive method must:

• Call itself only on smaller arguments

e.g. pow2(x) calls itself on pow(x-1)

• Include a base case where it doesn’t call
itself at all

e.g. pow(0) does not call itself

51 / 64



Example: factorial

Factorial of a nonnegative integer n:

n! ≜ n · (n− 1) · · · · · 1︸ ︷︷ ︸
n terms

52 / 64



Example: factorial

Factorial of a nonnegative integer n:

n! ≜ n · (n− 1) · · · · · 1︸ ︷︷ ︸
n terms

= n · (n− 1) · · · · · 1︸ ︷︷ ︸
n−1 terms

52 / 64



Example: factorial

Factorial of a nonnegative integer n:

n! ≜ n · (n− 1) · · · · · 1︸ ︷︷ ︸
n terms

= n · (n− 1) · · · · · 1︸ ︷︷ ︸
n−1 terms

n! ≜
1 if 0 ≤ n ≤ 1
n · (n− 1)! if n > 1

base case
recursive/inductive case

52 / 64



Example: factorial

Factorial of a nonnegative integer n:

n! ≜
1 if 0 ≤ n ≤ 1
n · (n− 1)! if n > 1

base case
recursive/inductive case

int factorial(int n) {
if (n <= 1)

return 1; // base case
else

return n * factorial(n - 1); // recursive case
}

recursive call

53 / 64



How does recursion work?

main factorial(3)
call

54 / 64



How does recursion work?

main factorial(3)

3 * factorial(2)

call

exec

54 / 64



How does recursion work?

main factorial(3)

3 * factorial(2) factorial(2)

call

call
exec

54 / 64



How does recursion work?

main factorial(3)

3 * factorial(2) factorial(2)

2 * factorial(1)

call

call
exec

exec

54 / 64



How does recursion work?

main factorial(3)

3 * factorial(2) factorial(2)

2 * factorial(1) factorial(1)

call

call

call

exec

exec

54 / 64



How does recursion work?

main factorial(3)

3 * factorial(2) factorial(2)

2 * factorial(1) factorial(1)

return 1

call

call

call

exec

exec

exec

54 / 64



How does recursion work?

main factorial(3)

3 * factorial(2) factorial(2)

2 * factorial(1) factorial(1)

return 1return 2 * 1

call

call

call

return

exec

exec

exec

54 / 64



How does recursion work?

main factorial(3)

3 * factorial(2) factorial(2)

2 * factorial(1) factorial(1)

return 1return 2 * 1return 3 * 2

call

call

call

returnreturn

exec

exec

exec

54 / 64



How does recursion work?

main factorial(3)

3 * factorial(2) factorial(2)

2 * factorial(1) factorial(1)

return 1return 2 * 1return 3 * 26

call

call

call

returnreturnreturn

exec

exec

exec

54 / 64



Thinking recursively

Recursion is a way to apply the divide and
conquer approach.

When solving a problem, ask yourself:

1. What is the simplest possible form of this
problem?

2. How can I reduce the problem to a simpler
problem of the same kind?

55 / 64



The Tower of Hanoi

Goal: move all disks from the left peg to the middle peg

Rules:

1. One move = take the disk on top of one peg and
place it on top of another peg

2. You can move only one disk at a time

3. A larger disk can never be placed on top of a
smaller disk

56 / 64



The original Tower of Hanoi

In the great temple of Benares, under the dome that
marks the center of the world, three diamond needles,
a foot and a half high, stand on a copper base. God
on creation strung 64 plates of pure gold on one of the
needles, the largest plate at the bottom and the others
ever smaller on top of each other. That is the tower of
Brahma. The monks must continuously move the plates
until they will be set in the same configuration on an-
other needle. The rule of Brahma is simple: only one
plate at a time, and never a larger plate on a smaller
one. When they reach that goal, the world will crumble
into dust and disappear.

Édouard Lucas, Récréations mathématiques, 1883.

57 / 64



The Tower of Hanoi: one disk

58 / 64



The Tower of Hanoi: two disks

59 / 64



The Tower of Hanoi: n disks

1. Recursively move n− 1 disks on a spare peg

2. Move remaining largest disk to destination peg

3. Recursively move n− 1 disks from spare peg to
destination peg

60 / 64



The Tower of Hanoi: n disks

// move 'n' top disks
// from 'source' peg to 'destination' peg via 'spare' peg
public void moveDisks(int n,
Peg source, Peg destination, Peg spare) {
if (n == 1)
// base case
moveOneDisk(source, destination);

else {
// recursively move n - 1 to spare
moveDisks(n - 1, source, spare, destination);
// move largest disk to destination
moveOneDisk(source, destination);
// recursively move n - 1 to destination
moveDisks(n - 1, spare, destination, source);

}
} 61 / 64



Got time for 64 disks?

• For n disks, solving the puzzle takes 2n − 1 moves

• If one move takes 1 millisecond, 264 − 1
milliseconds is about 580 million years

• For comparison: dinosaurs got extinct about 65
million years ago, humans are about 2.5 million
years old

Bottom line: recursion is a powerful abstraction tool,
which can be very effective at expressing the solutions
to complex problems in a simple way.

62 / 64



Recursion vs. Iteration

In principle, anything that can be done using recursion can be done
using iteration (loops) as well, and vice versa.

Recursive factorial:
int factorial(int n) {

if (n <= 1)
return 1;

else
return n * factorial(n - 1);

}

Iterative factorial:

int factorial(int n) {
int factorial = 1;
for (int k = n; k > 1; k--)
factorial *= k;

return factorial;
}

However, when the divide and conquer approach is naturally
applicable, recursion often leads to more readable and clearer
programs.

63 / 64



What’s next?

This was the final lecture!
Thank you for your attention.

To do:

• Finish the final two labs
• Start preparing for the exam

• Take a look at the study guide on the website
• You can ask any questions to the lab
assistants, on the discussion group, or by
sending me an email.

Good luck!
64 / 64


	Classes and inheritance recap
	Enumerated types
	Software design
	Designing individual classes
	Refactoring
	Recursion

