
Reasoning about program
correctness
Lecture 13 of TDA 540
Object-Oriented
Programming

Jesper Cockx
Fall 2018
Chalmers University of Technology — Gothenburg University

Last week: GUIs and event-driven
programming

Last week

• Programming graphical interfaces with
Swing

• Top-level: JFrame
• Second level: JPanel
• Atomic components: JLabel, JButton,

JTextField, …
• Event-driven programming

• Event handlers implement the
ActionListener interface

• Event publishers offer a method to subscribe
to events

1 / 55

The Timer class

class TickTock implements ActionListener {
boolean tick = true;
public void actionPerformed(ActionEvent e) {

if (tick)
System.out.println("tick");

else
System.out.println("tock");

tick = !tick;
}

Timer timer = new Timer(1000, new TickTock());
timer.start();

2 / 55

Lab 8: Tower Defence game

Goal: implement a simple tower defence game:

Assignment is now on the course webpage.
3 / 55

Kahoot: GUI’s and event-driven
programming

4 / 55

Program correctness

Central question

How can we know
a program works correctly?

5 / 55

Even more basic question

Why do we care that
a program works correctly?

6 / 55

The Ariane rocket incident

On June 4, 1996 the Ariane 5 rocket exploded
because of an overflow, shutting off the
onboard computer.

7 / 55

More reasons to care about program cor-
rectness

• Online banking
• Medical equipment
• Self-driving cars
• …

8 / 55

Program correctness

What does it mean for a program to be correct?

• A program that does not crash?
• A program that passes all the tests?
• A program that matches its specification!

9 / 55

Specification vs implementation

Correctness of a program is always relative to a
specification.

The specification is a description of what the
program should do (usually implicitly includes
“do not explode”).

The implementation (i.e. the actual code)
usually contains many more details than the
specification.

10 / 55

Specification vs implementation

Specification:

method sum takes a
non-null reference a to
an array of integers, and
returns the sum of all
values in a

Implementation:

int sum(int[] a) {
int sum = 0;
for (int v : a) {

sum += v;
}
return sum;

}

11 / 55

Specification: natural language vs symbols

Specification in natural language:

The program returns the first prime number greater than
the given number.

Specification in symbolic language:

r = nextPrime(n) ⇒
(r > n && isPrime(r) &&

∀ m: (m > n && isPrime(m)) ⇒ r ≤ m)

Which is better depends on the situation!
12 / 55

Pre- and post-conditions

Pre- and post-conditions

Pre- and post-conditions are an important part of the
specification for a method:

• A precondition = a property that should hold of the
method’s inputs before it is called
⇒ responsibility of the one calling the method

• A postcondition = a property that should hold of
the method’s output after it is done
⇒ responsibility of the body of the method

13 / 55

Method specifications

Specification:
1. precondition:

a != null
2. postcondition:

sum==∑
0≤k<a.lengtha[k]

Implementation:
int sum(int[] a) {

int sum = 0;
for (int v : a)

sum += v;
return sum;

}

14 / 55

Pre- and post-conditions in object-
oriented programs

In object-oriented programs, the input and output of a
method also include the object state before and after
executing the method.

Specification:
1. precondition:

amount >= 0

2. postcondition:
new volume =
old volume + x

Implementation:

class WaterGlass {
int volume;

void addWater(double x) {
volume += x;

}
}

15 / 55

Pre- and post-conditions in Java

JML is a system for annotating Java programs:

• @requires precondition

• @ensures postcondition

class WaterGlass {
double vol; double max;

// @requires vol + amount <= max;
// @ensures vol == \old(vol) + amount;
void addWater(double amount) {

volume += amount;
}

} 16 / 55

Invariants

An invariant is a property of the program’s
state that stays true throughout the execution
of the program.

Example: “The current volume of a glass is
between 0 and the maximum volume.”

You can think of an invariant as both a pre-
and a post-condition on each method.

17 / 55

Invariants in JML

Invariants are annotated with @invariant:

class WaterGlass {
// @invariant 0 <= vol && vol <= max;
double vol;

// @invariant max >= 0;
double max;

// ...
}

18 / 55

Handling invalid inputs

What should you do when an input does not
satisfy the preconditions?

• Lazy approach: don’t check for invalid
inputs

• Self-confident approach: return a default
value on invalid inputs

• Pedantic approach: use assertions to
check for invalid inputs

19 / 55

Lazy approach

public class WaterGlass {
// ...
public void removeWater(double amount) {

this.volume -= amount;
}

}
Glass glass = new WaterGlass(100);
glass.removeWater(200); // volume is now negative!

+ Takes no extra effort

- You have to be very careful when calling a method

20 / 55

Self-confident approach

public class WaterGlass {
// ...
public void removeWater(double amount) {

volume -= amount;
if (volume < 0) volume = 0;

}
}
Glass glass = new WaterGlass(100);
glass.removeWater(200); // volume is now 0

+ Program doesn’t crash

- It’s very hard to tell when something goes wrong
21 / 55

Pedantic approach

public class WaterGlass {
// ...
public void removeWater(double amount) {

assert (amount <= volume);
volume -= amount;

}
}
Glass glass = new WaterGlass(100);
glass.removeWater(200); // raises assertion error

+ You know immediately when something goes wrong

- Program crashes even when error wouldn’t matter
22 / 55

Reminder: assertions in Java

Assertions are Java’s built-in way to express pre- and
post-conditions in a program.

assert condition;

1. if condition == true, execution continues
(the assertion passes: no effects)

2. if condition == false, an exception
AssertionError is thrown
(the assertion fails)

Important: assertion checking is disabled by default. To
enable it run your program with java -ea MyProgram. 23 / 55

Assertions vs. Exceptions

Exceptions signal exceptional but possible behaviour

Assertions signal program states that should be
impossible

• in a correct program, assertions always evaluate to
true (and thus have no effect)

• an assertion evaluating to false indicates that
there is a mismatch between specification and
implementation (probably a bug)

Assertions are not enabled by default, so in practice Java
programmers often instead use exceptions.

24 / 55

Programming principle: Fail fast!

It’s usually better to fail fast rather than
continue with wrong inputs:

• Easier to find the precise location of the
error

• Easier to handle the problem ’one level up’
• Safer to stop the program rather than
perform some possibly irreversible
operation (e.g. overwriting a file)

25 / 55

More about exceptions

Exceptional behavior

Exceptions signal exceptional but possible
behaviour:

• the user provides invalid input
• the program runs out of memory
• a network connection cannot be
established because a website is down

• …

26 / 55

Programming with exceptions

Programs with exception-handling have two
control flows:

1. normal control flow: no exception occurs,
exception-handling code is not executed

2. exceptional control flow: exceptions occur,
exception-handling code is executed

27 / 55

Throwing exceptions

28 / 55

Exception example

// parse nonnegative integer string
int stringToInt(String str) {

int result;
if (str == null) throw new NullPointerException();
for (int i = 0; i < str.length(); i++) {

if (!Character.isDigit(str.charAt(i)))
throw new NumberFormatException(

str + " is not an integer!");
} // ... normal behavior ...
return result;

}

29 / 55

Catching exceptions

30 / 55

Finally blocks

31 / 55

Declaring exceptions

32 / 55

Exception objects

Exceptions are
represented by
exception objects,
which are instances
of exception classes

33 / 55

The exception hierarchy

34 / 55

Catching exceptions

try {
// ...

} catch (ET e) {
/* handler code */

}

This will catch all exceptions of type ET or
subtypes of ET

35 / 55

Multi-catch blocks

try {
// ...

} catch (ET1 | ET2 | ET3 e) {
/* handler code */

}

This will handle exceptions whose type is a
subtype of ET1, of ET2, or of ET3.

ET1, ET2, and ET3 must not be related by
inheritance.

36 / 55

Declaring a new exception class

You can create your own exceptions by creating a new
subclass of Throwable:

public class NotEnoughCake extends Throwable {
int missingCakes;

public NotEnoughCake(int missingCakes) {
this.missingCakes = missingCakes;

}
}

37 / 55

Throwing your own exceptions

private void throwParty()
throws NotEnoughCake, NotYourBirthday {

if (!getBirthday().equals(today()))
throw new NotYourBirthday();

if (!hasEnoughCake()) {
int missingCakes = nbOfPeople/2 - nbOfCakes;
throw new NotEnoughCake(missingCakes);

}
eatSomeCake();
System.out.println("This is an awesome party!");
eatSomeCake(); // om nom

}

38 / 55

Catching custom exceptions

public static void main(String[] args) {
BirthdayParty party = new BirthdayParty(20);
try {

party.throwParty();
} catch (NotEnoughCake e) {

System.out.println(
"We are missing" +
e.missingCakes + "cakes :(");

} catch (NotYourBirthday e) {
System.out.println(

"It's not your birthday");
}

}
39 / 55

Checked vs. unchecked exceptions

Java exception classes are partitioned in
checked and unchecked

Throwable

Error

...

... Exception

RuntimeException

...

...

40 / 55

Checked vs. unchecked exceptions

Java exceptions are either checked or unchecked

checked exceptions unchecked exceptions

must be declared in
method signatures with
throws

may or may not be de-
clared

must be handled or prop-
agated

may or may not be han-
dled

compiler checks all ex-
ceptions are handled

uncaught exceptions may
crash the program

41 / 55

Checked exception example
When calling a method that may throw a checked exception, you
must either declare the exception:

void tryToOpenFile(String filename)
throws FileNotFoundException {

FileReader fr = new FileReader(filename);
}

…or handle it:

void tryToOpenFile(String filename) {
try {

FileReader fr = new FileReader(filename);
} catch (FileNotFoundException e) {

System.out.println("Fail!");
}

} 42 / 55

Exceptions: checked or unchecked?

Advantages of checked exceptions:

• behaviour is explicit in method signature, so
clients know what exceptions to handle

• no uncaught exceptions at the top-level, so
program cannot crash on checked exception

Advantages of unchecked exceptions:

• don’t need exception handlers everywhere

• no need to change public interface of methods

43 / 55

Exceptions: checked or unchecked?

How to choose in practice between checked and
unchecked exceptions?

• use a checked exception if the client can do
something to recover from the exception

• document the usage of unchecked exceptions too

• usually prefer checked exceptions to error codes

44 / 55

Program verification

Verification

Verification is the process of checking that a program is
correct.
⇒ we need a specification before we can do verification

Three main techniques to do verification:

• code inspection: look at the code and try to see if
it does the correct thing.

• testing: run the program on different inputs and
check that every run satisfies the specification

• formal verification: mathematically prove that
every possible execution of the program satisfies
the specification

45 / 55

Code inspection

Just looking at your code is often the first thing
to do when trying to find an error.

Often someone who did not write the code can
more easily spot errors (pair programming).

Code inspection is never a replacement for
proper testing!

46 / 55

Unit testing vs system testing

Two main kinds of testing:

• Unit testing: test functionality of
individual components (methods and
classes)

• System testing: test overall functionality
of the whole program

Both kinds of testing are necessary!

47 / 55

Unit testing example

Method addWater under test:

class WaterGlass {
double vol;
double max;

WaterGlass (double max) {
this.max = max;
this.vol = 0;

void addWater(double x) {
vol += x;

}
}

Testing code:

WaterGlass g =
new Waterglass(250);

g.addWater(0);
assert g.volume() == 0;
g.addWater(121);
assert g.volume() == 121;
g.addWater(3);
assert g.volume() == 121 + 3;

48 / 55

Some strategies for writing tests

• Partition testing: Divide inputs in classes
and choose (at least) one ‘typical example’
from each class

• According to the program logic (black-box)
• According to the program structure
(white-box)

• Boundary value testing: Test inputs at the
boundary between classes

• Randomized testing: Test the program on
randomly generated input

• Regression testing: Whenever you fix an
error, add a test to make sure it stays fixed!

49 / 55

Thou shall test your code!

Systematically testing your code is a good
practice that every programmer should follow.

• Test extensively: write unit tests for all
public methods

• Test early: start writing tests as soon as a
class has a public interface

• Test often: rerun the tests each time you
make a change

Big projects can often have 2-3x more tests
than actual code!

50 / 55

Formal verification

Formal verification = mathematically proving that a
program is implemented correctly, often with the help of
a computer.

• Model checking: systematically explore all possible
program states, using some model of the program.

• Theorem proving: write down a detailed proof that
the program works correctly, and let the computer
check each step of the proof.

Formal verification often takes a lot of effort but it is the
only way to guarantee that the program is implemented
correctly.

51 / 55

Program verification in Java

Java has no built-in support for program
verification.

Instead, we must rely on external tools to
verify Java programs.

52 / 55

Program verification using VeriFast

53 / 55

Program verification in Agda

Other languages like Agda have program
verification built-in:

54 / 55

What’s next?

Next (and final!) lecture:
Software design & recursion.
To do:

• Read the book:
• Today: parts of chapter 7
• Next lecture: parts of chapers 12 & 131

• Start working on the final two labs
1Online chapters available at

http://bcs.wiley.com/he-bcs/Books?action=resource&bcsId=
6907&itemId=1118063317&resourceId=27347

55 / 55

http://bcs.wiley.com/he-bcs/Books?action=resource&bcsId=6907&itemId=1118063317&resourceId=27347
http://bcs.wiley.com/he-bcs/Books?action=resource&bcsId=6907&itemId=1118063317&resourceId=27347

	Last week: GUIs and event-driven programming
	Program correctness
	Pre- and post-conditions
	More about exceptions
	Program verification

