
Subclasses & Interfaces
Lecture 11 of TDA 540
Object-Oriented
Programming

Jesper Cockx
Fall 2018
Chalmers University of Technology — Gothenburg University



Last lecture: classes and objects

An object consists of a private state and a
public interface.

A class describes a collection of objects with a
common structure:

Attributes describe how objects’ state is
represented in memory.

Methods describe how objects can be
observed and modified.

Constructors describe how to construct new
objects of the class.

1 / 42



Last lecture: attributes

2 / 42



Last lecture: methods

3 / 42



Last lecture: constructors

4 / 42



Inheritance



Inheritance

Inheritance = relation between a general class (the
superclass) and a more specific one (the subclass)

Example: a car is a vehicle
⇒ Car is a subclass of Vehicle

In Java:

class Vehicle { ... }
class Car extends Vehicle { ... }

All members (attributes and methods) of Vehicle are
automatically also members of Car.

5 / 42



Inheritance example
class Account {

int balance;
void deposit(int amount) {
balance += amount;

}
}

class CheckingAccount
extends Account {
void withdraw(int amount) {
deposit(-amount);

}
void close() {
balance = 0;

}
}

Using CheckingAccount:

CheckingAccount a =
new CheckingAccount();

a.deposit(1000);
a.withdraw(500);
a.close();

6 / 42



Warning: do not redefine attributes

If a class has an attribute with the same name as one of the
superclass’ attributes, it gets two copies of the attribute:

class Account {
int balance;
int getBalance() {

return balance;
}

}

class CheckingAccount
extends Account {
int balance;
void withdraw(int amount) {
balance -= amount;

}
}

Calling withdraw() does not change the result of getBalance()!

7 / 42



Overriding

Overriding = redefine a method from the superclass

class Account {
int balance;

void withdraw(int amount) {
balance -= amount;

}
}

class NoOverdrawnAccount
extends Account {
// redefinition of withdraw
@Override
void withdraw(int amount) {

if (amount <= balance)
balance -= amount;

}
}

8 / 42



super: referencing the superclass

The keyword super denotes a reference to the current
object as an instance of the superclass.

class Account {
int balance;
void withdraw(int amount) {
balance -= amount;

}
}

class NoOverdrawnAccount
extends Account {
@Override
void withdraw(int amount) {

if (amount <= balance)
// call withdraw
// from Account
super.withdraw(amount);

}
}

9 / 42



Inheritance and constructors

You can call the constructor of the superclass using
super(...). This must be the first statement in the
constructor of the subclass.

class Account {
int balance;
Account(int balance) {

this.balance =
balance;

}

class LimitedAccount
extends Account {

int maxOverdraw;
LimitedAccount(int balance,

int max) {
// calls Account(balance);
super(balance);
this.maxOverDraw = max;

}
}

10 / 42



final methods and classes

The keyword final can also be used to restrict
inheritance:

• a method marked as final cannot be overridden.

• a class marked as final cannot be inherited from.

Example: String is final, so we cannot create new
subclasses of String.

11 / 42



Abstract classes and methods

An abstract method has a signature but no
implementation.

Only abstract classes can have abstract methods.
Abstract classes cannot be instantiated.

Non-abstract subclasses must override all abstract
methods.

12 / 42



Abstract class example

// Partial implementation
abstract class Account {

int balance;
abstract void addInterest();

}

class CheckingAccount
extends Account {
@Override
void addInterest() {

return;
}

}

class SavingAccount
extends Account

static INTEREST = 0.001;
@Override
void addInterest() {
balance += balance*INTEREST;

}
}

13 / 42



Developing a class hierarchy

1. List the classes that are part of the hierarchy

2. Organize the classes according to the ’is a’ relation

3. Determine responsibilities of each class, starting at
the top of the hierarchy

4. Implement each class

4.1 Declare the public interface
4.2 Identify instance variables
4.3 Implement constructors and methods

5. Test the whole hierarchy

14 / 42



When to create a new subclass?

Not every kind of object needs its own
subclass:

• If objects vary in their behaviour
⇒ different subclasses

• If objects only vary in some values
⇒ one class is enough

15 / 42



Live coding:
designing a class hierarchy of shapes

16 / 42



Inheritance and types

Every class C corresponds to a type.

If C is a subclass of another class B, then C is a subtype of
B: an object of type C can be used as an object of type B.

class Car {
void openDoor()
{ /* ... */ }

}

class Convertible
extends Car {

void openTop()
{ /* ... */ }

}

A convertible is a car!

17 / 42



Liskov’s substitution principle

A program that expects an object of a superclass should
also work when given an object of a subclass instead.

e.g. a program that works with a Vehicle should also
work for a Car.

• Subclass can only add new attributes and
methods, never remove them

• Return types of methods can only become more
specific

• Argument types can only become more general
18 / 42



15 min. break



Interfaces



Interfaces

An interface is a list of abstract operations describing
the public interface (API) of a class.

public interface IGlass {
double getCurrentVolume();
void addWater(double amount);
void removeWater(double amount);

}

All methods are automatically public and abstract.

No attributes1 or constructors.
1Except for static final attributes

19 / 42



Interfaces and classes

A class can implement one or more interfaces:

• it must override all methods of the interfaces
(no need for @Override)

• it can also introduce other members (private or
public) without restrictions

class Glass implements IGlass {
private double volume;
int getCurrentVolume() {

return volume;
}
// ... other implementations ...

} 20 / 42



Interfaces and inheritance

An interface also can inherit from one or more interfaces
(but not from classes), by providing additional public
methods (or constants).

interface IAccount {
void deposit(long amount);
// ...

}

interface ISavingAccount
extends IAccount {

static final double INTEREST = 0.001;
void addInterest();

} 21 / 42



Interfaces and types

Every interface I also corresponds to a type.

Types of interfaces and classes are related by
inheritance:

• If a class C implements an interface I,
then C is a subtype of I.

• If an interface J extends another interface I,
then J is a subtype of I.

22 / 42



A spectrum of abstraction

Classes and interfaces are two opposite endpoints on a
spectrum of abstraction:

(concrete) class

abstract class

interface

complete implementation

partial implementation

no implementation

must have constructor

may have constructor

cannot have constructors

can be instantiated

cannot be instantiated

cannot be instantiated

all visibilities

all visibilities

only public visibility

completely concrete

partially abstract

completely abstract

23 / 42



A spectrum of abstraction

Classes and interfaces are two opposite endpoints on a
spectrum of abstraction:

(concrete) class abstract class interface

complete implementation partial implementation no implementation

must have constructor may have constructor cannot have constructors

can be instantiated cannot be instantiated cannot be instantiated

all visibilities all visibilities only public visibility

completely concrete partially abstract completely abstract

23 / 42



The collections framework



The Collections framework

Java’s Collections framework is a part of the standard
library containing commonly used data structures such
as ArrayList.

• Interfaces are separated from their concrete
implementations.

• Multiple different implementations of each
interface: user can choose best one based on the
situation.

• All interfaces are generic: they can store objects of
arbitrary classes (e.g. ArrayList<String>,
ArrayList<Integer>, ArrayList<Object>, …).

24 / 42



Overview of the Collections framework

Collection

Set

HashSet

LinkedHashSet

TreeSet

List

ArrayList

Vector

LinkedList

Queue PriorityQueue

25 / 42



Using the Collections framework

Official documentation:

https://docs.oracle.com/javase/8/docs/technotes/
guides/collections/

1. Select the interface that provides the operations
your application needs

2. Select one implementation class of the interface
that offers efficient implementation of those
operations

In most cases, you do not have to worry too much about
the implementation details.

26 / 42

https://docs.oracle.com/javase/8/docs/technotes/guides/collections/
https://docs.oracle.com/javase/8/docs/technotes/guides/collections/


The List interface

A list is an ordered collection of elements

interface List<E> {
void add(int index, E element);

E get(int index);

E remove(int index);

int size();

// ... several more methods are available ...
}

27 / 42



Implementations of the List interface

Two implementations of the List interface:

• ArrayList uses an array to store data
• get is very fast, add and remove are slower

• LinkedList stores data in a sequence of
nodes referencing each other

• add and remove are fast, get is slower

Both perform automatic resizing: they grow as
we add more elements.

ArrayList is a good default choice.
28 / 42



The Set interface

A set is an unordered collection with no duplicates

interface Set<E> {
void add(E element);

boolean contains(Object o);

boolean remove(Object o);

int size();

// ... several more methods are available ...
}

29 / 42



Implementations of the Set interface

Two implementations of the Set interface:

• HashSet stores elements in buckets
according to their hashCode

• all operations are very fast, takes more
memory

• TreeSet stores elements in a tree
structure

• all operations are quite fast, takes less
memory

HashSet is a good default choice.
30 / 42



The Map interface

A map is a data structure associating keys to values

interface Map<K,V> {
void put(K key, V value);

V get(Object key);

V remove(Object key);

boolean containsKey(Object o);

int size();
// ... several more methods are available ...

}
31 / 42



Implementations of the Map interface

Two implementations of the Map interface:

• HashMap stores elements in buckets
according to the hashCode of the key

• all operations are very fast, takes more
memory

• TreeMap stores elements in a tree
structure

• all operations are quite fast, takes less
memory

HashMap is a good default choice.
32 / 42



The Queue interface

A queue is an ordered collection (like List) meant to
store a sequence of objects that await processing

interface Queue<E> {
boolean offer(E e); // add element to the queue

E remove(); // get first element and remove it

E element(); // get first element (do not remove)

// ... several more methods are available ...
}

33 / 42



Implementations of the Queue interface

Two implementations of the Queue interface:

• LinkedList keeps elements in the order
they were added

• element returns element that was added first
(FIFO: first-in, first-out)

• PriorityQueue assigns a priority to each
element

• element returns element with highest priority

34 / 42



Generic classes and interfaces

A generic class or interface has one or more parameters
written as <E>.

interface Set<E>

We can instantiate the parameter to any type2:

Set<String> names = new HashSet<String>();

Once the parameter is instantiated, it is fixed:

HashSet<Integer> intSet;
intSet = new HashSet<String>(); // type error

2except primitive types, use wrapper types instead
35 / 42



Subtyping and generic classes

Warning: subtyping does not extend through
generic types.

• Car is a subtype of Vehicle
• Set<Car> is not a subtype of Set<Vehicle>

Set<Car> cars = new HashSet<Car>();
Vehicle myBike = new Bike();
cars.add(myBike); // type error

A Vehicle is not necessarily a Car!
36 / 42



Polymorphism

Polymorphism: we can switch between different
concrete implementations of an interface without
changing anything else in the program!

interface List<E> {
E get(int index);
void add(int index, E e);
int size();

}

List<String> l;
l = // choose any List implementation
l.add(0, "hej");
l.add(1, " då");
if (l.size() >= 2)
String s = l.get(0) + l.get(1);
System.out.println(s);

37 / 42



Polymorphism: formal definition

If S is a subtype of T, an expression of type S
can be used wherever an expression of type T is

expected.

The class/interface S is a specialization of
class/interface T (a Convertible is a Car!), so
all types are still consistent.

38 / 42



Polymorphism

Advantages of using polymorphism:

Decoupling You can think about (and use!) an
interface without worrying about the
implementation.

Cohesion If you know how to use one
implementation of List, you know how to
use all of them.

Component-based design You can switch out
one part of the code for another without
changing the overall behaviour.

39 / 42



Polymorphism on client-side: example

class CreditCard {
IBankAccount account;
List<Transaction> transactions;

void setPayments(IBankAccount ba) {
account = ba;

}

void pay(int nt) {
Transaction tr = transactions.get(nt);
if (tr != null) {

account.withdraw(tr.amount());
transactions.remove(nt);

}
}

} 40 / 42



Live coding!
Let us design and implement a

stack data structure.



What’s next?

Next lecture: Graphical interfaces &
event-driven programming.
To do:

• Read the book:
• Today: chapter 9
• Next lecture: chapter 10

• Hand in lab #5
• Start on lab #6

42 / 42


	Inheritance
	15 min. break
	Interfaces
	The collections framework

