
Objects and Classes
Lecture 10 of TDA 540
Object-Oriented
Programming

Jesper Cockx
Fall 2018
Chalmers University of Technology — Gothenburg University



History of object-oriented programming

Mid 1960s Ole-Johan Dahl and Kristen Nygaard develop SIM-
ULA 67, the first object-oriented programming lan-
guage

1970s Alan Kay, Adele Goldberg, and others develop
Smalltalk, a popular object-oriented language, and
introduce the term “object-oriented programming”

Mid 1980s Bertrand Meyer develops Eiffel, which popularized
object technology for the whole software develop-
ment lifecycle

Mid 1980s Bjarne Stroustrup’s C++ adds object-orientation to
C, making it a widely used programming paradigm

Today many programming languages also support some
form of object-oriented features

1 / 40



Objects

Object-oriented programming: a program consists of a
collection of objects that interact with each other and
together produce the desired result.

2 / 40



Objects

Object-oriented programming: a program consists of a
collection of objects that interact with each other and
together produce the desired result.

name: "Prof. Smith"
Teacher

id: 1
Student

id: 2
Student

id: 3
Student

id: 4
Student

teacher: students:
Classroom

Array 2 / 40



Objects in programming

Each object has an
internal state and
an external
interface

3 / 40



Example object: a glass of water

What is the state? What is the interface?
State:

• Current volume of
water

• Maximum volume

Operations:

• Measure current
volume

• Add water
• Remove water
• …

4 / 40



Example object: a glass of water

What is the state? What is the interface?
State:

• Current volume of
water

• Maximum volume

Operations:

• Measure current
volume

• Add water
• Remove water
• …

4 / 40



Example object: a glass of water

What is the state? What is the interface?
State:

• Current volume of
water

• Maximum volume

Operations:

• Measure current
volume

• Add water
• Remove water
• …

4 / 40



Example object: six-sided die

What is the state? What is the interface?
State:

• Current value on top

Operations:

• Read current value
• Roll the die
• …

5 / 40



Example object: six-sided die

What is the state? What is the interface?
State:

• Current value on top

Operations:

• Read current value
• Roll the die
• …

5 / 40



Example object: six-sided die

What is the state? What is the interface?
State:

• Current value on top

Operations:

• Read current value
• Roll the die
• …

5 / 40



Example object: coin purse

What is the state? What is the interface?
State:

• Number of coins of
each kind

Operations:

• Count number of coins
of one kind

• Count total value of all
coins

• Add new coins
• Pay a given amount
• …

6 / 40



Example object: coin purse

What is the state? What is the interface?
State:

• Number of coins of
each kind

Operations:

• Count number of coins
of one kind

• Count total value of all
coins

• Add new coins
• Pay a given amount
• …

6 / 40



Example object: coin purse

What is the state? What is the interface?
State:

• Number of coins of
each kind

Operations:

• Count number of coins
of one kind

• Count total value of all
coins

• Add new coins
• Pay a given amount
• …

6 / 40



Example object: robot

What is the state? What is the interface?
State:

• Current position
• Current direction

Operations:

• Get current position
• Get current direction
• Move one step
• Turn left/right
• …

7 / 40



Example object: robot

What is the state? What is the interface?
State:

• Current position
• Current direction

Operations:

• Get current position
• Get current direction
• Move one step
• Turn left/right
• …

7 / 40



Example object: robot

What is the state? What is the interface?
State:

• Current position
• Current direction

Operations:

• Get current position
• Get current direction
• Move one step
• Turn left/right
• …

7 / 40



Classes

A class describes a collection of objects with the same
interface:

• Die is the class of all dice

• Glass is the class of all water glasses

• CoinPurse is the class of all coin purses

• Robot is the class of all robots

class Glass { // user-defined class
private double volume; // state
void addWater(double amount) { // operation

volume = volume + amount;
}

}
8 / 40



What is in a class?

A class defines:

• How objects of that class are represented
in computer memory (the attributes)

• What methods are available on objects of
the class (the methods)

• How to create new objects of that class
(the constructors)

Each class also defines a new type.

9 / 40



Objects vs. classes

A class is a static entity:
it refers to a piece of code.

An object is a dynamic entity:
it is only created when the program executes.

An object is an instance of a certain class.

10 / 40



Attributes
An attribute (also called an instance variable or a field) represents
part of an object’s state.

• Each object has its own copy of the attributes

• Attributes can be of primitive or reference type

• final attributes cannot change once the object has been
created

Attributes are declared in the class body:

class Glass {
double volume; // current contents in ml
final double maxVolume; // maximum volume
// ...

}
11 / 40



Methods

A method (also called an instance method or a member
function) represents an operation that can be executed
on objects of the class.

A method can modify the object state and/or return
information about the object state.

Methods are declared in the class body:

class Glass {
// ...
public void addWater(double x) { volume += x; }
// ...

}
12 / 40



Getters and setters

Two common kinds of methods:

• Getters (= accessors) return the value of one
attribute:

public double getVolume() {
return volume;

}

• Setters (= mutators) change the value of one
attribute:

private void setVolume(double newVolume) {
volume = newVolume;

}
13 / 40



Constructors

A constructor is a special method that creates a new
object of the class.

• Constructors have the same name as the class

• A constructor has no return type (not even void!)

• It should give an initial value to all attributes
(uninitialized attributes get default value)

Constructors are declared in the class body:

public Glass(double size) {
volume = 0;
maxVolume = size;

} 14 / 40



Using a constructor

To use a constructor, we use the new keyword:

Glass glass = new Glass(100);

The result of new Glass(100) is a reference to the new
object.

15 / 40



Default constructors

If a class has no constructor, Java automatically
generates one with no parameters.

For example, for Glass we get

public Glass() { }

It’s a good idea to always give a constructor.

16 / 40



The life of an object

What we can do with an object obj:

initialize: using a
constructor

read state: using getters
or other methods

modify state: using
setters or other
methods

dispose: implicit in Java
when object is no
longer used

Glass glass;
// create empty glass
glass = new Glass(300);
if (glass.getVolume() == 0) {

System.out.println(
"Glass is empty");

}
// add some water
glass.addWater(100);
System.out.println(

"Now the glass contains "
+ glass.getVolume() + " ml.");

// glass is deleted

17 / 40



Garbage collection

In some languages (C++) the
programmer has to ’destruct’
an object when it’s no longer
needed.

In Java, this is done
automatically when the object
is no longer used
(= garbage collection).

⇒ you don’t have to worry

18 / 40



Designing a class

• Think about the responsibilities of this
class

• Specify the public interface (methods +
constructors)

• Determine the instance variables
• Implement the constructors and methods
• Test the class

19 / 40



Testing a class

• Construct one or more objects
• Invoke one or more methods
• Print out the results
• Compare to the expected results

20 / 40



Live coding:
implementing and testing Glass

21 / 40



15 min. break



Kahoot: objects and classes

22 / 40



Encapsulation / information hiding

An important role of an object is to hide
information from the rest of the program.

The client only has to know the public
methods and constructors = the API
(Application Programming Interface).

The (private) state can change while the rest of
the program stays the same.

⇒ Abstraction!
23 / 40



Information hiding: example

Public interface:
class Glass {

/* attributes invisible */

Glass(double size) {
/* body invisible */

}

double getVolume() {
/* body invisible */

}

void addWater(double amount) {
/* body invisible */

}
}

Client code:
Glass glass;
glass = new Glass(500);

// we don't have to worry how addWater
// and getVolume are implemented

glass.addWater(300);
if (glass.getVolume() > 100) {

System.out.println(
"Can drink water!");

}

24 / 40



Visibility of members

The visibility of a class member (attribute or method)
determines where in a program we can refer to that
member:

• private: x is only visible in the enclosing class

• protected: x is visible within the same package

• public: x is visible everywhere in the program

25 / 40



Visibility of members: examples

package p;

class A {
private int a;
protected void x()
{ a = 3; }
public void y()
{ a = 4; }
private void z()
{ a = b; }

}

package p;

class Z {
public static
void main(String[] args) {

A o = new A();
o.a = 1; // ERROR!
o.x(); // OK
o.y(); // OK
o.z(); // ERROR!

}

26 / 40



Visibility of members: examples

package p;

class A {
private int a;
protected void x()
{ a = 3; }
public void y()
{ a = 4; }
private void z()
{ a = b; }

}

package q;

class Z {
public static
void main(String[] args) {

A o = new A();
o.a = 1; // ERROR!
o.x(); // ERROR!
o.y(); // OK
o.z(); // ERROR!

}

27 / 40



Shadowing and the this reference

Every class implicitly has a special reference this, which
refers to the current object of the enclosing class.

class Glass {

double volume;

private void setVolume(int volume) {
this.volume = volume;

}
}

The local variable volume shadows the attribute volume.
28 / 40



Overloaded methods

Overloading: A class can have multiple methods with
the same name but different signatures:

• Different number of arguments

• Different types of arguments

• Different return type

Calls to overloaded methods pick the right method
based on the number and type of actual arguments.

29 / 40



Overloading: example

public class Glass {
// ...
public void addWater(double amount) {

currentVolume += amount;
}
public void addWater(String amount) {

addWater(Double.parseDouble(amount));
}
public void addWater() {

addWater(100);
}

}

30 / 40



Overloaded constructors
class Glass {

double current;
final double maximum;
Glass() {

this.maximum = 300;
this.current = 0;

}
Glass(double maximum) {

this.maximum = maximum;
this.current = 0

}
Glass(double max, double curr) {

this.maximum = max;
this.current = curr;

}
}

// client code
Glass g1 = new Glass();

Glass a2 = new Glass(200);

Glass a3 =
new Glass(400, 200);

31 / 40



Static members

A static member belongs to the whole class, not an individual
object.

• A static attribute is shared among all object of the class
• A static method can only use static attributes and other
static methods

• A constructor can never be static

Static members are accessed using the class name:

class CoinPurse {
static int[] COIN_SIZES =

{ 1 , 2 , 5 , 10 };
// ...

}

int[] coins =
CoinPurse.COIN_SIZES;

for (i : coins) {
// ...

}

32 / 40



The main method

A static method can be called without any object.

The method main with signature

public static void main(String[] args)

runs first whenever we run a Java program.

From main all objects in the program are created as the
program continues executing.

33 / 40



When to use static members?

Instance members: state + operations of objects

operation instance
create object: Die d = new Die();

modify object state: d.roll();
read current object state: if (d.lastRoll() = 6) ...

Static members: global operations + state

item static
constant: double angle = Math.PI/4.0;

math operation: double y = sqrt(x);
global state: int[] sizes = CoinPurse.COIN_SIZES;

34 / 40



Static or instance?

Rule of thumb:

Does it make sense to call (method) or access (attribute)
m independent of specific objects of its class?

1. Yes: you probably need a static member

2. No: you should go with an instance member

In most cases, the answer should be no!

35 / 40



The Object class

Object is a special class which contains all Java objects.

We say Object is a superclass of all other classes
(see next lecture for more about superclasses).

Object provides basic operation available on all objects:

• public String toString(): return a textual representation
of the object

• public boolean equals(Object obj): check if two objects
have the same value

• public int hashCode() return a unique identification
number of the object

We can override these methods in a class to give our own definition.
36 / 40



Overriding Object methods

class Glass {
public String toString() {

return String.format("Glass(%f,%f)",
current, maximum);

}

public boolean equals(Object other) {
// This does not work because 'other'
// doesn't have type Glass!
return this.current == other.current

&& this.maximum == other.maximum;
}

}
37 / 40



Checking the dynamic type of references

variable instanceof RefType

is true if and only if variable refers to an
object of class RefType.

• Use instanceof sparingly: in most cases
checking the type explicitly is not needed.

• One case where it is useful is when
overriding equals.

38 / 40



Using instanceof

class Glass {
public boolean equals(Object other) {

if (other instanceOf Glass) {
otherGlass = (Glass)other;
return this.current == otherGlass.current

&& this.maximum == otherGlass.maximum;
} else {

return false;
}

}
}

39 / 40



What’s next?

Next lecture on Tuesday at 10:00:
Subclasses and interfaces.
To do:

• Read the book:
• Today: chapter 8
• Next lecture: chapter 9

• Continue on lab #5

40 / 40


	15 min. break

