
Error handling and testing
Lecture 8 of TDA 540
Object-Oriented
Programming

Jesper Cockx
Fall 2018
Chalmers University of Technology — Gothenburg University

Last week: recap

Last week

• Multi-dimensional arrays
• The ArrayList class
• Wrapper classes

1 / 31

This week

• File input and output
• Exceptions and exception handlers
• Testing strategies

2 / 31

File input and output

Ways to communicate input and output

• Command line (System.in & System.out)
• Graphical user interfaces (JOptionPane)
• Reading and writing files
• Transmitting data over the network
• Getting input/output from another
program

3 / 31

Ways to communicate input and output

• Command line (System.in & System.out)
• Graphical user interfaces (JOptionPane)
• Reading and writing files
• Transmitting data over the network
• Getting input/output from another
program

3 / 31

The File class

An object of class File represents a file on the
computer’s disk (text, image, sound, video,
program, …).

Opening a file:

File myFile =
new File("important_stuff.txt");

4 / 31

Reading files
To read text from a file, we combine File and Scanner:

public static ArrayList<Integer>
readNumbers(String fileName)
throws FileNotFoundException {

File myFile = new File("data.txt");
Scanner input = new Scanner(myFile);
ArrayList<Integer> numbers =

new ArrayList<Integer>();
while (input.hasNextInt()) {

numbers.add(input.nextInt());
}
input.close();
return numbers;

}

5 / 31

Writing files

To write to a text file, we use the class PrintWriter:

PrintWriter writer =
new PrintWriter("secret.txt");

writer.println("Secret: ****");

PrintWriter supports all methods of System.out: print,
println, printf, …

6 / 31

PrintWriter example

public static void
makeRandomFile(String filename)
throws FileNotFoundException {

PrintWriter writer = new PrintWriter(filename);
for (int i = 0; i < 10000; i++) {
int x = (int) Math.random() * 100;
writer.println(x);

}
writer.close();

}

7 / 31

Putting it all together

Demo code: read out a list of integers from a
file and print the sorted values.

8 / 31

Exceptions

Exceptions

Whenever something unexpected happens
while running a program, Java will raise an
exception.

If the exception is not handled, the program
will crash and print the exception.

9 / 31

Two kinds of exceptions

Unchecked exceptions: some error in the program

• Array index out of bounds

• Division by zero

• Null pointer

• …

Checked exception: a problem beyond the program

• File not found

• Network disconnected

• …
10 / 31

Some common exceptions in Java

• NullPointerException
• IndexOutOfBoundsException
• InputMismatchException
• NoSuchElementException
• ArithmeticException
• NumberFormatException
• IllegalArgumentException
• FileNotFoundException (checked)

11 / 31

Propagating exceptions

Checked exceptions must be mentioned in the
method signature:

public static void makeFile()
throws FileNotFoundException {
PrintWriter writer =
new PrintWriter("...");

writer.println("...");
writer.close();

}

12 / 31

Exception handling

Catching exceptions

You can catch exceptions with try and catch:

public static void makeFile() {
try {
PrintWriter writer =
new PrintWriter("...");

writer.println("...");
writer.close();

} catch (FileNotFoundException e) {
System.out.println("Sorry!");

}
} 13 / 31

The Exception class

Exceptions are objects of a class Exception.

You can get the exception message with the
getMessage() method:

try {
...

} catch (FileNotFoundException e) {
String message = e.getMessage();
System.out.println(message);

}

14 / 31

Example: robust user input

boolean done = false;
while (!done) {
String indata =
JOptionPane.showInputDialog("Input an integer:");

try {
int number = Integer.parseInt(indata);
int res = number * number;
JOptionPane.showMessageDialog(null,

"The square is " + res);
done = true;

} catch (NumberFormatException e) {
JOptionPane.showMessageDialog(null,

"Invalid integer. Try again!");
}

}
15 / 31

Stack traces

A stack trace lists all methods that lead to the
point in the program where an exception was
thrown.

You can print the stack trace with the method
printStackTrace().

16 / 31

PrintStackTrace example
public static void main(String[] args) {

try {
a();

} catch (ArithmeticException e) {
e.printStackTrace();

}
}
static void a() {

b();
}
static void b() {

c();
}
static void c() {

int i = 1/0;
}

17 / 31

Catching all exceptions

It is possible to catch all exceptions:

try {
...

} catch (Exception e) {
...

}

This throws away all error messages,
so fixing bugs becomes very difficult
⇒ don’t do this!

18 / 31

The finally block

Code in a finally block is executed no matter
whether there was an exception or not.

Example: make sure file is always closed

PrintWriter writer;
try {
writer = new PrintWriter("secret.txt");
writer.println("Password: ****");

} finally {
writer.close();

}
19 / 31

Throwing your own exceptions

Throwing your own exceptions

You can throw exceptions in your own code:

public void withdraw(int amount) {
if (amount < balance) {

balance = balance - amount;
} else {
throw new IllegalArgumentException
("Not enough money!");

}
}

20 / 31

Throwing your own exceptions

You can throw exceptions in your own code:

public void withdraw(int amount)
throws IllegalArgumentException {

if (amount < balance) {
balance = balance - amount;

} else {
throw new IllegalArgumentException
("Not enough money!");

}
}

Optionally, you can declare the exception in the method
signature (required for checked exceptions). 21 / 31

15 min. break

Kahoot! Exceptions in Java

22 / 31

Testing

Reminder: compile-timevs run-timeerrors

Compile-time errors (aka static errors)
• Syntax errors
• Variable scoping errors
• Type errors
• Missing return statements
• …

Run-time errors (aka dynamic errors)
• Program crashes
• Uncaught exceptions
• Functional/logical errors
• …

What counts as a compile-time or run-time error
depends on the programming language!

23 / 31

Testing

To see if your program works correctly, you
need to test it.

To test effectively, you need to know what the
program is supposed to do:
you need a specification.

Modular design helps with testing: you can
test each component individually.

24 / 31

Unit testing vs system testing

Unit testing: test functionality of individual
components (methods and classes)

System testing: test overall functionality of the
whole program

Both kinds of testing are necessary!

25 / 31

Test early, test often

The longer a bug goes undiscovered, the more
work it takes to fix it!

Specification
⇒ Design
⇒ Implementation
⇒ Validation
⇒ Production

Rule of thumb: an bug not fixed in one phase
takes 10x more time to fix in the next phase

26 / 31

The limits of testing

Testing can only reveal the presence of bugs,
never their absence.

27 / 31

Testing strategies

import javax.swing.*;
public class Postage {

public static void main(String[] args) {
String input = JOptionPane.showInputDialog("Weight:");
double weight = Double.parseDouble(input);
String output;
if (weight <= 0.0)

output = "Weight must be positive!";
else if (weight <= 20.0)

output = "Postage is 5.50 kronor.";
else if (weight <= 100.0)

output = "Postage is 11.00 kronor.";
else if (weight <= 250.0)

output = "Postage is 22.00 kronor.";
else if (weight <= 500.0)

output = "Postage is 33.00 kronor.";
else

output = "Too heavy: use a packet.";
JOptionPane.showMessageDialog(null, output);

}
}

Question: how to test this program?
28 / 31

Black-box vs white-box testing

Black-box testing: test a program by looking at
its specification.
⇒ you don’t have to know the implementation

White-box testing: test a program by looking at
its implementation.
⇒ you can explore all possible code paths

29 / 31

Some strategies for writing tests

• Partition testing: Divide inputs in classes
and choose (at least) one ‘typical example’
from each class

• According to the program logic (black-box)
• According to the program structure
(white-box)

• Boundary value testing: Test inputs at the
boundary between classes

• Randomized testing: Test the program on
randomly generated input

30 / 31

What’s next?

Next lecture (in two weeks):
Recap & FAQ of part 1.
To do:

• Read the book:
• Today: chapter 7
• Next lecture: chapters 1-7

• Hand in the fourth lab assignment

31 / 31

	Last week: recap
	File input and output
	Exceptions
	Exception handling
	Throwing your own exceptions
	15 min. break
	Testing
	Testing strategies

