
More about methods
Lecture 5 of TDA 540
Object-Oriented
Programming

Jesper Cockx
Fall 2018
Chalmers University of Technology — Gothenburg University



Last week: recap



Last week’s topics

• How to write your own methods
• Formal parameters vs. actual parameters
• Applying ‘divide and conquer’ to split a
problem into smaller parts

• Notice opportunities for abstraction
• Pre- and post-conditions

1 / 24



Method declarations

2 / 24



Formal vs actual parameters

The arguments in the method definition are
the formal parameters.

int negate(int x) {
return -x;

}

The arguments at the place where the method
is used are the actual parameters.

int x = 5;
x = negate(x);

3 / 24



Private vs public methods

• A private method can only be used in
other methods in the same class.

• A public method can be used from any
class.

• (A protected method can be used from any class in
the same package.)

Unless there is a good reason, most methods
should be private!

4 / 24



Pre- and postconditions

A precondition says what should hold before a
method is called.

A postcondition says what should hold after
the method has completed.

// pre: a and b are positive integers
// post: the result is true iff a divides b
static boolean divides(int a, int b) {

return b % a == 0;
}

5 / 24



The DRY principle

DRY: Don’t Repeat Yourself!

Whenever you notice yourself copy-pasting a
piece of code, that is a missed opportunity for
introducing a new method!

6 / 24



Kahoot!
Methods & return statements

7 / 24



15 min. break



The power of abstraction

Abstraction is the most powerful tool in the
programmer’s toolbox:

• It allow you to think about what, not how.
• It allows you to focus on one thing at a
time.

• It allows you to refine the problem
step-by-step.

8 / 24



9 / 24



Methods as black boxes

A method = a black box:
• The user does not
have to know the
implementation.

• The implementation
does not have to
know how it is used.

10 / 24



The interface of a method

Each method has an interface explaining how
to use it, consisting of:

• Its name
• Whether it is static or an instance method
• Whether it is private or public
• Its output type
• Its arguments and their types
• Its documentation (including pre- and
post-conditions)

• Possible exceptions (see later)

Try to make the most use of these!
11 / 24



Implementing a method:
standard approach

1. Describe in words what the method
should do.

• If this is hard, apply divide and conquer!
2. Determine the inputs and outputs.

• Return type
• Number of arguments and their types
• Pre- and postconditions

3. Write the method in pseudocode.
4. Implement the method.
5. Test the method.

12 / 24



Implementing a method:
test-driven development

Instead of writing test at the end, you can start
by writing tests.

1. Write the tests
2. If a test fails, write code until it passes
3. Refactor (clean up) the code
4. Repeat until all the tests pass

The tests become a part of the specification.
13 / 24



Example problem: Swapper

Assignment: program a
robot to swap the cells
on the left and the right
of a corridor of width 3.

14 / 24



Think before programming

Question: What methods do we need?

One method swapAll that does everything in
one go?

Or do we need more methods? If so, which
ones?

15 / 24



Specification of swapAll

public void swapAll() swaps the cells to the left and
the right of the corridor.

• No output value ⇒ return type void
• No input values
• Precondition: the robot is at the start of a corridor
of width 3.

• Postconditions:
• The robot is at the end of the corridor
• All rows with a dark square on one side and a
dark square on the other side have been
swapped.

This seems hard to implement in one go…
We should apply divide and conquer!

16 / 24



Specification of swapAll

public void swapAll() swaps the cells to the left and
the right of the corridor.

• No output value ⇒ return type void
• No input values
• Precondition: the robot is at the start of a corridor
of width 3.

• Postconditions:
• The robot is at the end of the corridor
• All rows with a dark square on one side and a
dark square on the other side have been
swapped.

This seems hard to implement in one go…
We should apply divide and conquer!

16 / 24



Think of the smallest possible example

swapTwoCells();

swapTwoCells();
robot.move();
swapTwoCells();

swapTwoCells();
robot.move();
swapTwoCells();
robot.move();
swapTwoCells();

17 / 24



Think of the smallest possible example

swapTwoCells();

swapTwoCells();
robot.move();
swapTwoCells();

swapTwoCells();
robot.move();
swapTwoCells();
robot.move();
swapTwoCells();

17 / 24



Think of the smallest possible example

swapTwoCells();

swapTwoCells();
robot.move();
swapTwoCells();

swapTwoCells();
robot.move();
swapTwoCells();
robot.move();
swapTwoCells();

17 / 24



Specification of swapTwoCells

private void swapTwoCells() swaps the cells to the
left and the right of the robot.

• No return value ⇒ return type void
• No input values
• Precondition: there are open squares to the left
and the right of the robot.

• Postconditions:
• The colors of the squares to the left and the
right of the robot are swapped.

• The robot is in the same position as where it
started.

This is easier, but still quite hard…
18 / 24



Divide and conquer, again!

Solution: more methods!

• areColorsDifferent checks if colors to
the left and right are different

• changeColorOfLeft/changeColorOfRight
change the color of the cell to the
left/right

• changeColor changes the color of the
current cell

We also need atEndOfCorridor to check when
the task is finished.

19 / 24



Specification of areColorsDifferent

private boolean areColorsDifferent()
checks if colors to the left and right are
different:

• Output: a boolean (true or false).
• Input: nothing.
• Precondition: there are open squares to
the left and the right.

• Postconditions:
• The result is true iff the left cell is light and
the right cell is dark or vice versa.

• The robot is in the same position as where it
started. 20 / 24



Specification of changeColorOfLeft

private void changeColorOfLeft() changes
the color of the cell to the left:

• Input and output: nothing
• Precondition: there is an open square to
the left

• Postconditions:
• The color of the cell to the left of the robot
has changed from light to dark or vice versa.

• The robot is in the same position as where it
started.

Similarly for changeColorOfRight().
21 / 24



Specification of changeColor

private void changeColor() changes the
color of the cell at the current position:

• Input and output: nothing
• Precondition: none
• Postconditions:

• The color of the cell at the current position of
the robot has changed from light to dark or
vice versa.

• The robot is in the same position as where it
started.

22 / 24



Specification of atEndOfCorridor

private boolean atEndOfCorridor() checks if
the robot is at the end of the corridor:

• Output: a boolean
• Input: nothing
• Precondition: none
• Postcondition: the result is true iff the
robot is at the end of the corridor.

23 / 24



Next step: implementation!



What’s next?

Give your feedback on
http://bit.ly/TDA540_5.

Next lecture: Arrays.
To do:

• Read the book:
• Today: chapter 5
• Next lecture: chapter 6

• Start on the third lab:
creating and editing music files

24 / 24

http://bit.ly/TDA540_5

	Last week: recap
	15 min. break
	Next step: implementation!

