
Introduction to the course and
basic programming concepts
Lecture 1 of TDA 540
Object-Oriented Programming

Jesper Cockx
Fall 2018
Chalmers University of Technology — Gothenburg University



About the course



Teaching team

• Jesper Cockx (lecturer)
• Krasimir Angelov (examinator)
• Ken Bäcklund (lab assistant)
• Gunnar Stenlund (lab assistant)
• Yazan Ghafir (lab assistant)
• Adam Jenderbo (lab assistant)

1 / 47



About me

• Postdoc in the Logic &
Types group of the CSE
department

• One of the developers of
the Agda programming
language

• First time teaching this
course

• Moved to Göteborg from
Belgium last year

2 / 47



Course objectives

In this course, you will learn…

… the basic concepts of computer science.
… how to solve problems by writing small
programs in Java.

… how to understand and debug programs
written by yourself or other people.

… how to structure programs using
object-oriented programming.

3 / 47



Course overview

LP1: Basic programming concepts
• Primitive datatypes: int, double, String, …
• Control structures: if, while, for, …
• Writing your own methods
• Using single- and multi-dimensional arrays

LP2: Object-oriented programming
• Objects, classes, and interfaces
• The collections framework
• GUIs and event-driven programming
• Creating and handling exceptions

4 / 47



Course schedule

Course spans both LP1 and LP2.

• Lectures (in English) are on Mondays (LP1)
and Tuesdays (LP2).

• Lab sessions (in Swedish) are organized
2-3 times per week.

Always check time and location on TimeEdit!

5 / 47



Course website

www.cse.chalmers.se/edu/
course/TDA540/

• Latest updates
• Course schedule
• Lecture slides
• Assignments for lab sessions
• Self-study questions
• Contact information
• Links to useful resources

6 / 47

www.cse.chalmers.se/edu/course/TDA540/
www.cse.chalmers.se/edu/course/TDA540/


Course book

Horstmann:
Java For Everyone
(second edition)

Available at Cremona

7 / 47



Course examination

Two required components:

• 8 obligatory lab assignments (4 per block)
• Written exam in January.

8 / 47



Lab sessions

There are 8 obligatory lab assignments.

• You will work in groups of 2.
• The assignments are on the website.
• Submission of solutions via Fire.
• You can ask for help from one of the
assistants via Waglys.

See website for links to Fire and Waglys.

9 / 47



Getting help

• Fellow students
• Book, Java documentation, google, …
• Discussion group on Google Groups
• Ask lab assistants
• Ask me before/after lecture or via email

10 / 47



Embrace the growth mindset

Ask questions!

Reflect!

11 / 47



What is programming?



What is programming?

Programming
=

telling the computer what to do

using a programming language.

12 / 47



What is programming?

Programming
=

telling the computer what to do
using a programming language.

12 / 47



Why learn programming?

Knowing how to program is useful even if
you’re not a programmer:

• Computers and software are everywhere
• Understand possibilities and limitations of
tools you use

• Programming = problem solving

Also: programming is fun!

13 / 47



How does a computer work?

Memory is divided into code and data.
14 / 47



Machine code

15 / 47



Role of the compiler

Input
⇓

Source
code

compiler
====⇒ Machine

code =⇒ CPU

⇓
Output

16 / 47



Programming languages
vs. natural languages

Why not use a natural language?

• Complexity
• Ambiguity
• Not strictly defined

A programming language forces you to give
precise instructions that a computer can
understand!

17 / 47



Programming languages and you

Have you programmed before?

What programming language did you use?

18 / 47



19 / 47



Programming paradigms

Statically
typed

Dynamically
typed

Imperative
C, Go JavaScript,

Python, Ruby

Object-
oriented

Java, C++, C#,
Scala

JavaScript,
PHP

Declarative
Haskell, ML Lisp, Scheme,

Prolog

20 / 47



What is an algorithm?

An algorithm
=

A sequence of elementary instructions for
solving a given class of problems.

An algorithm must be:

• Unambiguous
• Executable
• Terminating

21 / 47



Two types of instructions in an algorithm

• Atomic instructions (e.g. increase x by 1,
wait 1 second, launch missile, …)

• Control instructions:
Sequence First do x, then do y
Choice If x is true, then do y, else do z

Iteration As long as x is true, repeat y
Jump Continue from point x

…

22 / 47



Algorithms in real life

Where can you find algorithms in your
everyday life?

(away from your computer/phone!)

23 / 47



Example programming problem

Write a program that asks the user for two
numbers and shows the sum of these two

numbers to the user.

24 / 47



Programming step by step
Analyse the problem

⇓

Construct a model
⇓

Write an algorithm
⇓

Implement the algorithm
⇓

Test the program
⇓

Document the program
⇓

Maintain the program
25 / 47



Algorithm for the example

1. Write “Give the first number: ”
2. Read the first number from the user
3. Write “Give the second number: ”
4. Read the second number from the user
5. Calculate the sum of the two numbers and
save the result

6. Show the sum on the screen

26 / 47



Implementing the algorithm

To implement the algorithm, we need to know
how to tell the computer to:

• Show text to the user
• Read input from the user
• Add two numbers
• Save a number in the computer memory
• Convert a number to text

27 / 47



15 min. break



Java and IntelliJ



The Java programming language

• Object-oriented programming language
• Platform independent
• Very large standard library
• Support for graphics, parallelism, etc.
• Just-in-time compilation

Not specifically designed for beginners,
so not everything will be clear at the start!

28 / 47



Your first Java program

/* A simple greeter program.
author: Jesper Cockx

*/

public class HelloWorld {

// Shows a welcome message to the user.
public static void main(String[] args) {

System.out.println("Hello, world!");
}

}

29 / 47



Comments in Java

Comment = explanation of the program for
humans (ignored by the compiler).

// This is a single-line comment.

/* This is a multi-line comment
(also called a block comment) */

30 / 47



Classes in Java

Java programs are organized in classes

public class ClassName {
// here go the methods, variables,
// and other parts of the program.

}

public: anyone is allowed to use this class.

Each program has exactly one main class
containing a main method.

31 / 47



The main method in Java

public static void main(String[] args) {
...

}

public: anyone is allowed to use this method.
static: this method belongs to the class rather than

to a specific object (see part II).

void: this method does not produce a result (but
it may still have other effects).

String[] args: the user input to the program (not used
most of the time).

32 / 47



The System class

System is a part of the Java standard library for
basic interaction with the computer.

A method call consists of a class name (or
object), the method name, and the method
argument(s) between parenthesis.

• System.out.println("some string");
• System.out.print("another string");

Class name can be skipped for methods in the
same class.

33 / 47



The IntelliJ IDE
(Integrated Development Environment)

• Text editor
• Code coloring
• Code completion
• Errors and warnings while programming
• Compiling and running code
• Automatic code refactoring
• …

A good IDE makes programming much easier,
try to get the most out of it!

34 / 47



Demonstration:
creating your first IntelliJ project

35 / 47



Compile-time errors vs. run-time errors

Compile-time error = error while compiling a
program (wrong variable name,
missing parenthesis, …)

Run-time error = error while running a
program (program crashes or gives
wrong output)

36 / 47



The String class

String greeting = "Hello, TDA540!";

String longString =
"This is a veeeeeeeeeeeeeeeeery"
+ "long string that doesn't fit"
+ "on one line.";

System.out.println(greeting);

37 / 47



38 / 47



Some operations on numbers

int number1 = 1;
int number2 = 1 + 1; // addition
int number3 = 9 - 2; // subtraction
int number4 = 2 * 3; // multiplication
int number5 = 7 / 2; // integer division (= 3)
int number6 = 7 % 2; // remainder after division
int number7 = -1; // negative number
double number8 = 1.5; // fractional number
double number9 = 7.0 / 2; // real division (= 3.5)

39 / 47



Wrapper classes

Each primitive type has a wrapper class with
additional operations:

int largest = Integer.MAX_VALUE // 2147483647
int smallest = Integer.MIN_VALUE // -2147483648
String numberString =

Integer.toString(12345) // "12345"
int myNumber =

Integer.parseInt("123" + "45") // 12345

40 / 47



Variables in Java

Variable = an intermediate result of a program.

int favoriteNumber = 6 ;

↑ ↑ ↑
type name value

Give meaningful names to variables!

41 / 47



Rules for naming variables

A variable name (or identifier) may consist of:

Letters: a . . . z and A . . . Z
Numerals: 0 . . . 9
Special characters: # and _

A variable name can not start with a number

Convention: start variables with a small letter

42 / 47



Updating a variable

You only have to mention the type of a variable
the first time:

int number1 = 1;
int number2 = 1;
number1 = number2 + 1;
number2 = number1 + number2;

43 / 47



44 / 47



Graphical interfaces with Swing

import javax.swing.*;

public class HelloSwing {
public static void main(String[] args) {
JOptionPane.showMessageDialog(null,

"Hello, world!");
String name = JOptionPane.showInputDialog(

"What is your name?");
String greeting = "Hi, " + name + "!";
JOptionPane.showMessageDialog(null, greeting);

}
}

45 / 47



Live coding session

Assignment: Write a program that asks the user for two
numbers and shows the sum of these two numbers to the
user.

Algorithm:

1. Write “Give the first number: ”
2. Read the first number from the user
3. Write “Give the second number: ”
4. Read the second number from the user
5. Calculate the sum of the two numbers and save the
result

6. Show the sum on the screen
46 / 47



What’s next?

Next lecture (tomorrow!):
if-statements and the Java standard library.

To do:
• Read the book:

• Today: parts of chapter 1 and 2
• Next lecture: parts of chapter 2 and chapter 3

• Install Java and IntelliJ

47 / 47


	About the course
	What is programming?
	15 min. break
	Java and IntelliJ

