Functional Programming
TDA 452/DIT142

» Find up-to-date information relevant for the

course
. shortcut:
* Visit the course homepage.
— Schedule
— Lab assignments (first deadline in 1 week!)
— Exercises
— Last-minute changes
+ Sign up for the google group!

shortcut:
bit.ly/tda452-11

Functional Programming

David Sands*

*Adapted slides from Koen Lindstrém Claessen & John Hughes

Why learn FP?

» Functional programming will make you
think differently about programming

— mainstream programming is all about state
and how to transform state

— Functional programming is all about values
and how to construct values using functions
* Whether you use it later or not, it will make
you a better programmer

A Haskell Demo

« Start the GHCi Haskell interpreter:

> ghci

NN N O
/I NI GHC Interactive, version 6.6.1
http://www.haskell.org/ghc/

|
7/ /_\\/ / /|
| Type :? for help.

_ |
\ VAVAVAVAN /1_1
Loading package base ... linking ... done.
Prelude>

[The prompt. GHCi is ready for input. J

Why Haskell?

*Haskell is a very high-level language (many details
taken care of automatically).

*Haskell is expressive and concise (can achieve a lot
with a little effort).

*Haskell is good at handling complex data and
combining components.

*Haskell is a high-productivity language (prioritise
programmer-time over computer-time).

Naming a Value

We give a name to a value by making a
definition.

Definitions are put in a file, using a text
editor such as emacs.
> emacs Examples.hs

Do this in a separate
window, so you can
edit and run hugs
simultaneously.

The UNIX prompt, Haskell files
not the ghci one! end in .hs

Creating the Definition

T emacs@TABLETPCJOHN (= [E)[X]

File Edit Options Buffers Tools Help
euroRate = 9.16642

Give the name
euroRate to the
value 9.16642

~|
-14--| \xamples.hs {Fun
I-Irotel \/Documem:s and Se?i]

variable

Using the Definition

Load the file
Examples.hs into
ghci — make the

definition
available.

The prompt
changes —

we have Prelude> :1 Examples

now loaded /Main> euroRate

a program. 9.16642
Main> 53*euroRate
485.82026
Main>

We are free to make
use of the definition.

A Function to convert Euros to SEK

A definition —
placed in the
file
Examples.hs

A comment — to help us }
understand the program

-- convert euros to SEK
sek x = x*euroRate
AN

Function name
— the name we
are defining.

Expression to

Name for the compute the
argument result

Using the Function

Reload the file to make the
new definition available.
Main> :r

Main> sek 53
485.82026

Main> euro (sek 49) == 49
True

The operator == tests
whether two values are equal

Converting Back Again

-- convert SEK to euros
euro X = x/euroRate

Main> :r
Main> euro 485.82026

53.0
Main> euro (sek 49)

49.0
Main> sek (euro 217)
217.0

Automated Testing

» Define a function to perform the test for us

prop_EuroSek x = euro (sek x) == x ‘

Main> prop EuroSek 53 Performs the same

Tr1.1e tests as before — but
Main> prop_EuroSek 49 now we need only
True

remember the
function name!

Writing Properties in Files

» Convention: functions names beginning
"prop_" are properties we expect to be
True

» Writing properties in files
— Tells us how functions should behave
— Tells us what has been tested
— Lets us repeat tests after changing a definition

Automatic Testing

» Testing account for more than half the cost
of a software project

» We will use a widely used Haskell library
for automatic random testing

import/I%st.QuickCheck ‘

Add first in the file of
definitions — makes

Names are case]
QuickCheck available.

sensitive.

Running Tests

Runs 100
randomly
chosen
tests

Main> quickCheck prop_EuroSek
Falsifiable, after 10 tests:
3.75)

The value for which

the test fails.

Main> sek 3.75
34.374075

I;la;;> euro 34.374075 Looks OK

The Problem

» There is a very tiny difference between the
initial and final values

Main> euro (sek 3.75) - 3.75

4.44089209850063e-016 e-016
means .10-16

* Calculations are only performed to about
15 significant figures

* The property is wrong!

Fixing the Problem

The result should be nearly the same

The difference should be small — smaller
than 10-1°

Main> 2<3

True We can use < to see whether
Mains 3<2 one numbertﬁ less than
False another

Defining "Nearly Equal”

» We can define new operators with names
made up of symbols

X ~=my = Xy < 10e-15

With \/Which returns True if

arguments x the difference between
andy x and y is less than
10»15

Define a new
operator ~==

Testing ~==

Main> 3 ~== 3.0000001 OK
True

Main> 3~==4

True
Huh? What's
wrong?

‘X ~== y = X-y < 0.000001

Fixing the Definition

¢ A useful function

Main> abs 3 L Absolute value]
3

Main> abs (-3)
3

X ~==y = abs (x-y) < 0.000001 ‘

Main> 3 ~== 4
False

Fixing the Property

prop_EuroSek x = euro (sek x) ~== X

Main> prop_EuroSek 3
True

Main> prop_EuroSek 56
True

Main> prop_EuroSek 2
True

Name the Price

« Let’s define a name for the price of the
game we want

price = 53

Main> sek price
ERROR - Type error in application

*** Expression : sek price
*¥** Term : price
*¥** Type : Integer

*** Does not match : Double

Every Value has a Type

» The :i command prints information about a
name

~

Main> :i price Integer (whole number) is

price :: Integer the inferred type of price
J

Main> :i euroRate DY

euroRate :: Double Double is the type of real
numbers

Funny name, but refers to

double the precision that

computers originally used/

More Types

Main> :i True
True :: Bool -- data constructor

Main> :i False
False :: Bool -- data constructor

. . The type of a function
Main> :i sek

sek :: Double -> Double —— Type of the result

Main> :i prop_EuroSek
prop_EuroSek :: Double -> Bool

Type of the argument

Types Matter

* Types determine how computations are

performed
Specify which type to use

Main> 123456789*123456789 :: Double
1.52415787501905e+016\t Correct to 15 fi }
gures

Main> 123456789*123456789 :: Integer
15241578750190521

GHCi must know the type The exact result — 17 figures
of each expression (but must be an integer)

before computing it.

Type Checking

* Infers (works out) the type of every
expression

» Checks that all types match — before
running the program

Our Example
Main> :i price
price :: Integer

Main> :i sek
sek :: Double -> Double

Main> sek price
ERROR - Type error in application

*** Expression : sek price
*** Term : price
*** Type : Integer

*** Does not match : Double

Why did it work before?

Certainly works to say 53
Main> sek 53 What is the type of 537

485.82026

"5"21'” >3 ¢ Integer 2 53 can be used with several

types — it is overloaded
Main> 53 :: Double

1

1

53.0

Main> price :: Integer iéﬁﬁ£Gwmgnanamem@sme
53 type

Main> price :: Double

ERROR - Type error in type annotation

*** Term : price

*** Type : Integer

*** Does not match : Double

Fixing the Problem

« Definitions can be given a type signature
which specifies their type

price :: Double
price = 53

Main> :i price
price :: Double

Main> sek price
485.82026

Always Specify Type
Signatures!
They help the reader (and you)
understand the program

The type checker can find your errors
more easily, by checking that definitions
have the types you say

Type error messages will be easier to
understand

Sometimes they are necessary (as for
price)

Example with Type Signatures

euroRate :: Double
euroRate = 9.16642

sek, euro :: Double -> Double
sek x = x*euroRate
euro x = X/euroRate

prop_EuroSek :: Double -> Bool
prop_EuroSek x = euro (sek x) ~== x

Function Definition by Cases
and Recursion

Example: Absolute Value

» Find the absolute value of a number
—If x is positive, result is x
— If x is negative, result is -x

Notation

We can abbreviate repeated left hand
sides

-- returns the absolute value of x

absolute x | x >= @
absolute x | x <

X absolute x| x >= @
-X | x <o

(]

Haskell also has if then else

absolute x = if x >= @ then x else -x

absolute :: Integer -> Integer

absolute x | x >= 0 = x

absolute x | x < @ = -x
Recursion

* First example of a recursive function
—Compute x" (without using built-in x*n)

power X © 1

power x n | n > 0@

X * power x (n-1)

* Calculate to find the answer:
power 2 2 = 2 * power 2 (2-1)
=2*power21=2%*2"*power2(1-1)
=2*2*power20=2*2*1=4

Recursion

Reduce a problem (e.g. power x n) to a
smaller problem of the same kind

So that we eventually reach a "smallest”
base case

Solve base case separately
Build up solutions from smaller solutions

You should have seen recursion before,
so this intro will be brief

Example: Counting intersections

* n non-parallel lines. How many
intersections (at most)?

The Solution

* Always pick the base case as simple as
possible!

intersect :: Integer -> Integer
intersect @ =0

intersect n
| n >0 = intersect (n - 1) + n - 1

